Toggle light / dark theme

Summary: Researchers report the same subset of neurons encode actual and illusory flow motion, supporting the concept Jan Purkinje proposed 150 years ago, that “illusions contain visual truth”.

Source: SfN.

A study of humans and monkeys published in Journal of Neuroscience has found the same subset of neurons encode actual and illusory complex flow motion. This finding supports, at the level of single neurons, what the Czech scientist Jan Purkinje surmised 150 years ago: “Illusions contain visual truth.”

Strange, powerful signals from deep space called fast radio bursts are slippery little suckers.

Most of them just flash once, a mysterious huge spike in the radio data out of nowhere, lasting just milliseconds at most. They can’t be predicted, and because they’re so brief, they’re incredibly hard to trace.

Hard; but not impossible. Less than a year ago, for the first time, astronomers announced they traced one of these mysterious one-off signals to its source galaxy. Since then, their techniques have allowed them to trace three more.

Achieving near-zero friction in commercial and industrial applications will be game-changing from tiny microelectromechanical systems that will never wear out, to oil-free bearings in industrial equipment, to much more efficient engines and giant wind turbines scavenging energy even in low wind conditions. Superlubricity offers promising solutions to overcome lubrication challenges in various areas of nanotechnology including micro/nano-electromechanical systems (MEMS/NEMS), water transport control, biomedical engineering, atomic force microscopy (AFM), aerospace and wind energy applications, as well as other electronic devices. It is one of the most promising properties of functional nanomaterials for energy saving applications.

Mars — glorious, dusty, complex Mars — may once have been even more dazzling. New research provides even more evidence that a rubbly ring once circled the Red Planet.

The new clue lies in Deimos, the smaller of the two Martian moons. It’s orbiting Mars at a slight tilt with respect to the planet’s equator — and this could very well be the result of the gravitational shenanigans caused by a planetary ring.

Ring systems aren’t actually all that uncommon. When you think about ring systems, your mind immediately leaps to Saturn, no doubt — but half the planets in the Solar System have rings, Saturn, Uranus, Neptune, and Jupiter. Dwarf planet Haumea, and centaurs Chiron and Chariklo also have rings.

Dozens of journalists have been sacked after Microsoft decided to replace them with artificial intelligence software.

Staff who maintain the news homepages on Microsoft’s MSN website and its Edge browser – used by millions of Britons every day – have been told that they will be no longer be required because robots can now do their jobs.

Around 27 individuals employed by PA Media – formerly the Press Association – were told on Thursday that they would lose their jobs in a month’s time after Microsoft decided to stop employing humans to select, edit and curate news articles on its homepages.

Solving a difficult physics problem can be surprisingly similar to assembling an interlocking mechanical puzzle. In both cases, the particles or pieces look alike, but can be arranged into a beautiful structure that relies on the precise position of each component (Fig. 1). In 1983, the physicist Robert Laughlin made a puzzle-solving breakthrough by explaining the structure formed by interacting electrons in a device known as a Hall bar1. Although the strange behaviour of these electrons still fascinates physicists, it is not possible to simulate such a system or accurately measure the particles’ ultrashort time and length scales. Writing in Nature, Clark et al.2 report the creation of a non-electronic Laughlin state made of composite matter–light particles called polaritons, which are easier to track and manipulate than are electrons.

To picture a Laughlin state, consider a Hall bar, in which such states are usually observed (Fig. 2a). In these devices, electrons that are free to move in a two-dimensional plane are subjected to a strong magnetic field perpendicular to the plane. In classical physics, an electron at any position will start moving along a circular trajectory known as a cyclotron orbit, the radius of which depends on the particle’s kinetic energy. In quantum mechanics, the electron’s position will still be free, but its orbital radius — and, therefore, its kinetic energy — can be increased or decreased only in discrete steps. This feature leads to large sets of equal-energy (energy-degenerate) states called Landau levels. Non-interacting electrons added to the lowest-energy Landau level can be distributed between the level’s energy-degenerate states in many different ways.

Adding repulsive interactions between the electrons constrains the particles’ distribution over the states of the lowest Landau level, favouring configurations in which any two electrons have zero probability of being at the same spot. The states described by Laughlin have exactly this property and explain the main features of the fractional quantum Hall effect, whereby electrons in a strong magnetic field act together to behave like particles that have fractional electric charge. This work earned Laughlin a share of the 1998 Nobel Prize in Physics. Laughlin states are truly many-body states that cannot be described by typical approximations, such as the mean-field approximation. Instead, the state of each particle depends on the precise state of all the others, just as in an interlocking puzzle.

SpaceX had just conducted yet another static fire test of the Raptor engine in its Starship SN4 prototype launch vehicle on Friday when the test vehicle exploded on the test stand in Boca Chica, Texas. This was the fourth static fire test of this engine on this prototype, so it’s unclear what went wrong versus other static fire attempts.

This was a test in the development of Starship, a new spacecraft that SpaceX has been developing in Boca Chica. Eventually, the company hopes to use it to replace its Falcon 9 and Falcon Heavy rocket, but Starship is still very early in its development phase, whereas those vehicles are flight-proven, multiple times over.

SpaceX had just secured FAA approval to fly its Starship prototype for short, suborbital test flights. The goal was to fly this SN4 prototype for short distances following static fire testing, but that clearly won’t be possible now, as the vehicle appears to have been completely destroyed in the explosion following Friday’s test, as you can see below in the stream from NASASpaceflight.com.

The European Union wants a massive dose of research spending to lift it out of what could be the worst recession in its history. Last week, as part of a €1.85 trillion budget and pandemic recovery proposal, the European Commission, the EU executive arm, unveiled plans to pump €94.4 billion into research over 7 years, nearly €11 billion more than originally planned for the program, called Horizon Europe. But not everyone thinks the money is the best medicine.


Horizon Europe gets €13.5 billion to spend fast, spur growth.