Menu

Blog

Page 7845

May 23, 2020

Researchers Turn a Single Atom Into a Quantum Engine and a Quantum Fridge

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

Here’s a new chapter in the story of the miniaturization of machines: researchers in a laboratory in Singapore have shown that a single atom can function as either an engine or a fridge. Such a device could be engineered into future computers and fuel cells to control energy flows.” Think about how your computer or laptop has a lot of things inside it that heat up. Today you cool that with a fan that blows air. In nanomachines or quantum computers, small devices that do cooling could be something useful,” says Dario Poletti from the Singapore University of Technology and Design (SUTD).

This work gives new insight into the mechanics of such devices. The work is a collaboration involving researchers at the Centre for Quantum Technologies (CQT) and Department of Physics at the National University of Singapore (NUS), SUTD and at the University of Augsburg in Germany. The results were published in the peer-reviewed journal npj Quantum Information on 1 May.

Engines and refrigerators are both machines described by thermodynamics, a branch of science that tells us how energy moves within a system and how we can extract useful work. A classical engine turns energy into useful work. A refrigerator does work to transfer heat, reducing the local temperature. They are, in some sense, opposites.

May 23, 2020

DNA-repairing enzyme reverses age-related cognitive decline

Posted by in categories: biotech/medical, life extension, neuroscience

DNA damage is common to our cells, but when we’re young our bodies can fix it pretty easily. Unfortunately we lose that ability over time, leading to many of the symptoms of aging that we know all too well. A new study from MIT has found that reactivating a certain enzyme improves repair of DNA damage in neurons, which helps Alzheimer’s patients and others with cognitive decline.

Previous studies by the team have shown that an enzyme called HDAC1 seems to be involved in DNA repair in neurons. For the new study, the researchers examined what happens when HDAC1 doesn’t do its job.

The team engineered mice to be deficient in HDAC1, and monitored their health compared to normal mice. Things looked good during the animals’ youth – there were no differences in DNA damage or behavior between the two groups. But as they aged, the decline became clear.

May 23, 2020

How Poop Can Be Worth $9.5 Billion

Posted by in category: futurism

Circa 2015


A decidedly renewable resource has some very profitable uses.

May 23, 2020

Why Californians Will Soon Be Drinking Their Own Pee

Posted by in category: futurism

Circa 2014 o.o


It’s a much better option than desalination.

May 23, 2020

A “Flying Saucer” Design Lets Drones Fly Twice as Long

Posted by in category: drones

Engineers found a way to stabilize a drone that only uses two propellers.

May 23, 2020

GM EV Batteries Will Last For 1 Million Miles & Have 600 Mile Range

Posted by in categories: sustainability, transportation

In March, Lauren McDonald was on hand for GM’s EV Day, during which much of the discussion was about the new Ultium batteries GM and LG Chem will be manufacturing at a new battery factory just down the road from the former Lordstown, Ohio assembly plant. That factory is projected to have an annual capacity of 30 gigawatt-hours of battery cells. While GM made a bunch of grandiose claims about its campaign to bring electric cars to market that day, few actual details about the Ultium battery emerged during the presentation.

May 23, 2020

Producing ethane from methane using a photochemical looping strategy

Posted by in categories: chemistry, particle physics

A team of researchers from the University of Lille, CNRS, Centrale Lille, University of Artois, in France, and Keele University in the U.K has developed a way to produce ethane from methane using a photochemical looping strategy. In their paper published in the journal Nature Energy, the group describes their process. Fumiaki Amano with the University of Kitakyushu in Japan has published a News & Views piece on the work done by the team in the same journal issue.

Over the past several years, has become important for the production of fuels and other chemicals. But due to its stability, converting methane to desired products requires high temperatures and results in less-than-desired selectivity. Developing a way to carry out such conversions without the need for energy intensive heat production has been a goal of chemists in the field for several years. Prior research has suggested that methane coupling is an attractive option due to the ease with which it can be dehydrogenated to ethylene. In this new effort, the researchers followed up on such suggestions, and in so doing, have developed a way to produce ethane from methane that overcomes prior problems.

Amano suggests the success factor used by the researchers centered around the development of a three-part nanocomposite material—by adding phosphotungstic acid and silver cations to a traditional TiO2 photocatalyst. The resulting Ag–HPW/TiO2 nanocomposites induced methane coupling which resulted in the production of ethane—and also small amounts of propane and CO2. The final result was a two-stage looping process that was based on photochemical conversions. Amano notes that the process resulted in silver cation reduction to a metallic, which was followed up by reoxidization of a metallic silver species using oxygen that was irradiated with ultraviolet light. He also points out that the HPW coating that was used on the particles was a major factor in improving selectivity, and suggests that the looping redox cycle is similar in some ways to the reactions that happen in rechargeable batteries.

May 23, 2020

New chip brings ultra-low power Wi-Fi connectivity to IoT devices

Posted by in categories: computing, habitats, internet, media & arts, wearables

More portable, fully wireless smart home setups. Lower power wearables. Batteryless smart devices. These could all be made possible thanks to a new ultra-low power Wi-Fi radio developed by electrical engineers at the University of California San Diego.

The device, which is housed in a chip smaller than a grain of rice, enables Internet of Things (IoT) devices to communicate with existing Wi-Fi networks using 5,000 times less than today’s Wi-Fi radios. It consumes just 28 microwatts of power. And it does so while transmitting data at a rate of 2 megabits per second (a connection fast enough to stream music and most YouTube videos) over a range of up to 21 meters.

The team will present their work at the ISSCC 2020 conference Feb. 16 to 20 in San Francisco.

May 23, 2020

Critical “Starbleed” vulnerability in FPGA chips identified

Posted by in categories: computing, encryption, mobile phones, security

April 2020


Field programmable gate arrays, FPGAs for short, are flexibly programmable computer chips that are considered very secure components in many applications. In a joint research project, scientists from the Horst Görtz Institute for IT Security at Ruhr-Universität Bochum and from Max Planck Institute for Security and Privacy have now discovered that a critical vulnerability is hidden in these chips. They called the security bug “Starbleed.” Attackers can gain complete control over the chips and their functionalities via the vulnerability. Since the bug is integrated into the hardware, the security risk can only be removed by replacing the chips. The manufacturer of the FPGAs has been informed by the researchers and has already reacted.

The researchers will present the results of their work at the 29th Usenix Security Symposium to be held in August 2020 in Boston, Massachusetts, U.S… The has been available for download on the Usenix website since April 15, 2020.

Continue reading “Critical ‘Starbleed’ vulnerability in FPGA chips identified” »

May 23, 2020

Ultra-dense optical data transmission over standard fibre with a single chip source

Posted by in categories: computing, quantum physics

Micro-combs — optical frequency combs generated by integrated micro-cavity resonators – offer the full potential of their bulk counterparts, but in an integrated footprint. They have enabled breakthroughs in many fields including spectroscopy, microwave photonics, frequency synthesis, optical ranging, quantum sources, metrology and ultrahigh capacity data transmission. Here, by using a powerful class of micro-comb called soliton crystals, we achieve ultra-high data transmission over 75 km of standard optical fibre using a single integrated chip source. We demonstrate a line rate of 44.2 Terabits s−1 using the telecommunications C-band at 1550 nm with a spectral efficiency of 10.4 bits s−1 Hz−1. Soliton crystals exhibit robust and stable generation and operation as well as a high intrinsic efficiency that, together with an extremely low soliton micro-comb spacing of 48.9 GHz enable the use of a very high coherent data modulation format (64 QAM — quadrature amplitude modulated). This work demonstrates the capability of optical micro-combs to perform in demanding and practical optical communications networks.