Toggle light / dark theme

Instead of recruiting whole phages into phage therapy armies, antibacterial campaigns may simply requisition the organisms’ battle-tested cell-wall-breaching enzymes.

It was 1917 when Felix d’Herelle, at the Institut Pasteur in Paris, first proposed using bacteriophages (or phages)—viruses that infect bacteria—as a therapy for human bacterial infections. Although used for decades in parts of Europe, notably Russia, Poland, and the Republic of Georgia, phage therapy is only permitted in the United States under the “compassionate use” umbrella—when there is nothing else available.

The rise of multidrug-resistant bacteria that defy traditional antibiotics has forced clinicians to seek alternative measures to curb deadly infections. Two cases made headlines in recent years. In 2016, the life of Thomas Patterson, PhD, a professor of psychiatry at the University of California, San Diego, was saved by phage therapy after he developed a deadly Acinetobacter baumannii infection. (The story is recounted in The Perfect Predator, the book that Patterson co-authored with his wife, epidemiologist Steffanie A. Strathdee, PhD.) Last year, the life of an English teenager was saved after she developed an infection following a lung transplant for cystic fibrosis.


Lysins, phage enzymes that can undermine bacterial cell walls, have enormous potential as therapeutics. They may even race ahead of therapies that rely on whole phages, which may arouse resistance.

Our mindset is everything: what one person sees as a crisis, another person sees as opportunity.

The magnitude of economic and social disruption caused by COVID-19 (25% of small businesses have closed, bankruptcies are up 26%) means that many existing business models are being upended. In some cases, entire industries.

As an entrepreneur, you should be asking yourself: What challenges or problems can I solve? What are new digital business models I want to experiment with?

Female #Astrophysicist Helped Build 1st #AtomicBomb

Today marks 75 years since the 1st use of #nuclear weapons in #war-time, when the #US dropped the 1st atomic bomb on #Hiroshima, #Japan. One of the very few female #scientists who worked on the #ManhattanProject went on to become a researcher in high-energy #physics, #astrophysics, #cosmology, & diatomic molecular #spectroscopy.

MORE INFO: CLICK ON #IMAGE OR LINK

LIKE THIS POST? PLEASE SHARE!

Link.

One of the final pieces for the first test flight of NASA’s huge Space Launch System heavy-lift rocket recently arrived at the Kennedy Space Center, joining other elements already at the Florida spaceport awaiting shipment of the SLS core stage once it completes testing at a NASA facility in Mississippi.

The Launch Vehicle Stage Adapter, or LVSA for the first SLS test launch arrived at the Kennedy Space Center in Florida aboard NASA’s Pegasus barge July 29. Early the next day, hours before the liftoff of NASA’s Mars 2020 Perseverance rover from a launch pad a few miles away, ground crews transferred the LVSA from the Pegasus barge into the Vehicle Assembly Building at the Florida spaceport.

The LVSA is the second-to-last element of the first Space Launch System rocket to arrive at the Kennedy Space Center. The biggest piece of the rocket, known as the core stage, is expected to arrive at Kennedy after test-firing of its four main engines on a test stand in Mississippi later this year.

One of the major challenges in turning quantum technology from potential to reality is getting super-delicate quantum states to last longer than a few milliseconds – and scientists just raised the bar by a factor of about 10,000.

They did it by tackling something called decoherence: that’s the disruption from surrounding noise caused by vibrations, fluctuations in temperature, and interference from electromagnetic fields that can very easily break a quantum state.

“With this approach, we don’t try to eliminate noise in the surroundings,” says quantum engineer Kevin Miao, from the University of Chicago. “Instead, we trick the system into thinking it doesn’t experience the noise.”