Toggle light / dark theme

Ripped from the pages of a sci-fi novel, physicists have crafted a wormhole that tunnels a magnetic field through space.

“This device can transmit the magnetic field from one point in space to another point, through a path that is magnetically invisible,” said study co-author Jordi Prat-Camps, a doctoral candidate in physics at the Autonomous University of Barcelona in Spain. “From a magnetic point of view, this device acts like a wormhole, as if the magnetic field was transferred through an extra special dimension.”

The idea of a wormhole comes from Albert Einstein’s theories. In 1935, Einstein and colleague Nathan Rosen realized that the general theory of relativity allowed for the existence of bridges that could link two different points in space-time. Theoretically these Einstein-Rosen bridges, or wormholes, could allow something to tunnel instantly between great distances (though the tunnels in this theory are extremely tiny, so ordinarily wouldn’t fit a space traveler). So far, no one has found evidence that space-time wormholes actually exist. [Science Fact or Fiction? The Plausibility of 10 Sci-Fi Concepts].

The United Arab Emirates is counting down to the launch of its first interplanetary space mission today — one that will send a spacecraft called “Hope” to orbit Mars. The Emirates Mars Mission will aim to provide a global snapshot of the weather on the Red Planet. It will also be a source of pride for the UAE as the country celebrates the 50th anniversary of its founding in December of 2021.

To ensure that Hope is actually at Mars by the anniversary, the UAE must launch this summer. Planetary scientists have a very small window every two years to send spacecraft to Mars, when the Red Planet and Earth closely align on their orbits. If Hope launches in July, the spacecraft will spend the next seven months traveling to Mars, arriving sometime in February — leaving it plenty of time in orbit before the anniversary.

Summary: APOEe4, a gene associated with Alzheimer’s disease risk, doesn’t appear to directly affect memory performance or brain activity in older adults without cognitive impairment. However, the gene does seem to influence brain regions and systems that older at-risk adults activate to support successful memory recall.

Source: McGill University

Researchers at McGill University and the Douglas Mental Health University Institute, in collaboration with the StoP-AD Center, have published a new paper in the Journal of Alzheimer’s Disease, examining how a known genetic risk factor for late-onset Alzheimer’s disease (AD) influences memory and brain function in cognitively intact older adults with a family history of AD.

It’s first uncrewed flight will take place early 2021 and it is set to launch from NASA’s Kennedy Space Center’s Shuttle Landing Facility in Florida.


Space Perspective is building a balloon that will be able to transport passengers and research equipment to the “edge of space.”

There are several companies looking to enter the emerging “space tourism” marketplace, but Space Perspective sets itself apart with its balloon design, named Spaceship Neptune. This balloon will accompany a pressurized and spacious cabin, creating a comfortable traveling experience for its passengers, according to its maker.

The final goal is to carry passengers and research equipment to and from above 99% of the atmosphere, but its first flight in 2021 from NASA’s Kennedy Space Center’s Shuttle Landing Facility in Florida will be unmanned. In order to accommodate these plans, Space Neptune’s balloon will be the size of a football field and will release almost no emissions, according to its maker.

Large-scale oceanic phenomena are complicated and often involve many natural processes. Tropical instability wave (TIW) is one of these phenomena.

Pacific TIW, a prominent prevailing oceanic event in the eastern equatorial Pacific Ocean, is featured with cusp-shaped waves propagating westward at both flanks of the tropical Pacific cold tongue.

The forecast of TIW has long been dependent on physical equation-based numerical models or statistical models. However, many natural processes need to be considered for understanding such complicated phenomena.

A team from the Cockrell School of Engineering at the University of Texas at Austin have developed a new kind of battery that mixes the best of both worlds of liquid- and solid-state batteries. The design is the first all-liquid metal battery that can work at room temperature and is claimed to outperform lithium-ion batteries.

Liquid metal batteries are less susceptible to wearing out than solid batteries because dendrites don’t form and damage the components. The only downside is, most of these batteries need to be heated to at least 240°C (464°F) to keep the metals liquid and the equipment required to do that is bulky and energy-consuming.

For the study, published in the journal Advanced Materials, the UT team examined alloys that could remain liquid at useful temperatures. They decided to use a gallium-indium alloy for the cathode and a sodium-potassium alloy for the anode, which was able to stay liquid at 20°C (68°F). The researchers say it’s the lowest operating temperature ever recorded for a liquid-metal battery.

The United Arab Emirates (UAE) will launch its first-ever interplanetary mission today (July 19), and you can watch the historic liftoff live.

The Emirates Mars Mission, also known as Hope, is scheduled to launch atop an H-IIA rocket from Japan’s Tanegashima Space Center today at 5:58 p.m. EDT (2158 GMT; 6:58 a.m. July 20 Japan Standard Time. You can follow the action live here at Space.com courtesy of the UAE Space Agency and the Dubai One news channel, or directly via the latter two organizations here.