Toggle light / dark theme

We present GameNGen, the first game engine powered entirely by a neural model that enables real-time interaction with a complex environment over long trajectories at high quality. GameNGen can interactively simulate the classic game DOOM at over 20 frames per second on a single TPU. Next frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compression. Human raters are only slightly better than random chance at distinguishing short clips of the game from clips of the simulation. GameNGen is trained in two phases: an RL-agent learns to play the game and the training sessions are recorded, and a diffusion model is trained to produce the next frame, conditioned on the sequence of past frames and actions. Conditioning augmentations enable stable auto-regressive generation over long trajectories.

“For the most part, we think of the deep sea as a place where decaying material falls down and animals eat the remnants. But this finding is recalibrating that dynamic,” said Dr. Jeffrey Marlow.


What can deep ocean life teach us about finding life on other worlds? This is what a recent study published in Nature Geoscience hopes to address as an international team of researchers investigated how “dark oxygen” —which is oxygen produced without sunlight—is produced by deep sea creatures that reside within the Clarion-Clipperton Zone (CCZ) which is approximately 12,000 to 18,000 feet beneath the ocean’s surface and completely dark. This study holds the potential to help researchers better understand the conditions for life and where else we might find these conditions on worlds outside Earth.

For the study, the researchers used deep-sea chambers on the seafloor to measure changes in oxygen levels, which the team initially hypothesized was caused by the microbial life and other creatures living between the rocks, the latter of which are millions of years old. Along with thinking the local life produced the oxygen, the team also hypothesized the life consumed it, as well, resulting decreased oxygen levels. However, after 48 hours of collecting data, the researchers the oxygen levels increased, indicating that something else was producing oxygen at these extreme depths so far from the Sun.

The researchers found that these million-year-old rocks, called polymetallic nodules, were responsible for producing the oxygen, which the team has since dubbed dark oxygen since these ocean depths are so far down that no sunlight can reach it. With these incredible findings, the researchers postulate that dark oxygen could help explain why and how life can survive at such extreme depths, and potentially help astrobiologists find life on other world, including Jupiter’s moon, Europa, and Saturn’s moon, Enceladus.

What were galaxies like in the early universe? This is what a recent study published in The Astronomical Journal hopes to address as an international team of researchers investigated the formation and evolution of galaxies in the early universe, as recent studies have suggested they were much larger than cosmology models had simulated. This study holds the potential to help researchers better understand the conditions in the early universe and how life came to be.

“We are still seeing more galaxies than predicted, although none of them are so massive that they ‘break’ the universe,” said Katherine Chworowsky, who is a PhD student at the University of Texas at Austin and lead author of the study.

For the study, the researchers used NASA’s James Webb Space Telescope to peer deep into the universe’s past and observe some of the earliest galaxies to ascertain their sizes and whether they are as massive as recent studies have suggested. After analyzing the data, the researchers discovered that black holes residing at the center of these galaxies are creating false brightness and sizes, meaning these galaxies are much smaller than previously thought, thus reducing the panic within the scientific community regarding cosmological models. However, this study does suggest further research is necessary regarding star formation and evolution within these galaxies.

Berkeley scientists have discovered a new choanoflagellate species in Mono Lake that forms multicellular colonies and hosts a microbiome, offering new perspectives on the evolution of multicellular organisms.

The salty, arsenic-and cyanide-laced waters of the Eastern Sierra Nevada’s Mono Lake is an extremely hostile environment. Aside from the abundant brine shrimp and black clouds of alkali flies, very few organisms live there.

Now, researchers from the University of California, Berkeley have discovered a new creature lurking in the lake’s briny shallows — one that could tell scientists about the origin of animals more than 650 million years ago.

The study, published by a multi-institutional team of researchers…


Researchers used D-Wave’s quantum computing technology to explore the relationship between prefrontal brain activity and academic achievement, particularly focusing on the College Scholastic Ability Test (CSAT) scores in South Korea.

The study, published by a multi-institutional team of researchers across Korea in Scientific Reports, relied on functional near-infrared spectroscopy (fNIRS) to measure brain signals during various cognitive tasks and then applied a quantum annealing algorithm to identify patterns correlating with higher academic performance.

The team identified several cognitive tasks that might boost CSAT score — and that could have significant implications for educational strategies and cognitive neuroscience. The use of a quantum computer as a partner in the research process could also be a step towards practical applications of quantum computing in neuroimaging and cognitive assessment.