Toggle light / dark theme

Scientists in China have managed to revive brain activity in pigs nearly an hour after circulation ceased, thanks to the surprising involvement of the liver.

If translatable to humans, this finding could have significant implications for extending the critical window in which doctors can resuscitate patients following sudden cardiac arrest.

The research team, led by Dr. Xiaoshun He at Sun Yat-Sen University, experimented with the brains of 17 Tibetan minipigs to investigate how the liver might influence brain recovery.

Two researchers at The University of Alabama in Huntsville (UAH) have published a paper that demonstrates for the first time that a subluminal warp drive is possible within the bounds of known physics without the need to employ exotic unknown forms of matter or energy, while also advancing our understanding of gravity. UAH alumnus Dr. Jared Fuchs led a team of physicists that produced the paper, supported by Dr. Christopher Helmerich, also an alumnus of UAH, a part of the University of Alabama System, both working in conjunction with the New York-based Applied Propulsion Laboratory of Applied Physics (APL).

When Mexican physicist Miguel Alcubierre first proposed his theoretical warp drive in 1994, the concept required a bubble of ‘negative energy density’ around an object to create an imbalance in space-time, generating motion without movement of the craft, thus avoiding violations of the speed-of-light limit. But the Star Trek dream comes with a catch: it would have to be powered by either exotic particles that haven’t yet been discovered, or the mysterious dark energy thought to drive the expansion of the universe, currently viewed by most physicists as not remotely achievable.

Fuch’s team’s Constant-Velocity Subluminal Warp Drive, however, offers a new means of propulsion that allows it to operate at constant subluminal speeds, while still conforming to Einstein’s theory of general relativity, with no need for ‘unphysical’ forms of matter required by previous designs.

In a recent discovery, astronomers have found that the black hole in the well-known low-mass X-ray binary (LMXB) system V404 Cygni is part of a much larger structure—a wide triple system.


Many black holes detected to date appear to be part of a pair. These binary systems comprise a black hole and a secondary object — such as a star, a much denser neutron star, or another black hole — that spiral around each other, drawn together by the black hole’s gravity to form a tight orbital pair.

Now a surprising discovery is expanding the picture of black holes, the objects they can host, and the way they form.

In a study appearing today in Nature, physicists at MIT and Caltech report that they have observed a “black hole triple” for the first time. The new system holds a central black hole in the act of consuming a small star that’s spiraling in very close to the black hole, every 6.5 days — a configuration similar to most binary systems. But surprisingly, a second star appears to also be circling the black hole, though at a much greater distance. The physicists estimate this far-off companion is orbiting the black hole every 70,000 years.

Dimon was speaking at the Georgetown Psaros Center for Financial Markets and Policy’s annual Financial Markets Quality Conference when he was asked whether he had any advice for the students there.

“For most of you guys, turn off TikTok, Facebook. A total stupid waste of time,” Dimon said.

Reading widely and consuming history books, Dimon said, would be a far better use of their time.

Astronomers found the exhaust vent of a chimney at our galaxy’s center for the first time.


There is a supermassive black hole at the center of our galaxy that is nearly 17 times bigger than the Sun and can suck in over 1,800 Earths at once. This gigantic black hole goes by the name Sagittarius A* (Sgr A.

In a new study, a team of researchers claims that Sgr A* has caused the formation of a chimney and an exhaust vent at the center of the Milky Way.

The study takes into account images from NASA’s Chandra X-Ray Observatory and radio emission data from the MeerKAT telescope, revealing that the vent attached to the chimney is expelling hot gases from our galaxy’s center.