Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Light and heavy electrons cooperate in magic-angle superconductors

Electrons play many roles in solid materials. When they are weakly bound and able to travel—i.e., mobile—they can enable electrical conduction. When they are bound, or “heavy,” they can act as insulators. However, in certain solid materials, this behavior can be markedly different, raising questions about how these different types of electrons interact.

In a study just published in Nature Physics, researchers working with Professor of Physics and Applied Physics Amir Yacoby at Harvard examined the interplay between both types of electrons in this material, shedding new on how they may help form novel quantum states.

“Before our work, people could only ask ‘What is the overall ground state?’” said Andrew T. Pierce, one of the paper’s lead authors. Pierce, currently a fellow at Cornell University, was a graduate student in Yacoby’s lab when they began to study this question. What wasn’t clear was the true nature of these different states and how the separate light and heavy electrons joined forces to form them.

Quantum enhancement discovery could improve medical technologies

Technologies such as biomedical imaging and spectroscopy could be enhanced by a discovery in research that involved several institutions, including the University of Glasgow. Scientists have found that two-photon processes, which have applications in the study of Alzheimer’s disease and other nervous system disorders, can be strengthened by quantum light at far higher levels than previously thought possible.

The processes normally require high-intensity light but this can cause samples to be damaged or bleached.

It was suggested many years ago—and has since been demonstrated—that entangled could overcome this limitation. However, it has been widely believed that this quantum enhancement only survives for very faint light, raising doubts about the usefulness of the approach.

Stars That Shouldn’t Shine Are Pointing Straight to Dark Matter’s Identity

Deep in the center of our galaxy, scientists believe a strange type of star may be quietly glowing—not from fusion like our Sun, but from the invisible fuel of dark matter.

These “dark dwarfs” could act like cosmic detectors, collecting heavy, elusive particles that heat them from the inside. If we find them—and especially if we spot one missing its lithium—it could finally point us toward what dark matter really is.

Dark dwarfs & dark matter basics

NightEagle APT Exploits Microsoft Exchange Flaw to Target China’s Military and Tech Sectors

Cybersecurity researchers have shed light on a previously undocumented threat actor called NightEagle (aka APT-Q-95) that has been observed targeting Microsoft Exchange servers as a part of a zero-day exploit chain designed to target government, defense, and technology sectors in China.

According to QiAnXin’s RedDrip Team, the threat actor has been active since 2023 and has switched network infrastructure at an extremely fast rate. The findings were presented at CYDES 2025, the third edition of Malaysia’s National Cyber Defence & Security Exhibition and Conference held between July 1 and 3, 2025.

/* */