Toggle light / dark theme

Through a cross-species study of metformin, a common drug used to treat Type 2 diabetes, a team of researchers and clinicians from the Donnelly Center and The Hospital for Sick Children (SickKids) has shown that it could one day be possible to repair brain injury using resident cells in the brain.

“No one’s actually shown before that you can take a drug where there’s a known mechanism on endogenous stem cells and demonstrate that it’s even possible to induce and positive recovery,” says Donald Mabbott, Program Head and Senior Scientist in the Neurosciences & Mental Health program at SickKids, and co-author of a study published in Nature Medicine on July 27.

Mabbott says metformin is a potential game-changer in terms of how childhood brain injury is treated.

International team of scientists with Mainz participation proposes plans for high-intensity gamma radiation source at CERN.

The ‘Gamma Factory initiative’ – an international team of scientists – is currently exploring a novel research tool: They propose to develop a source of high-intensity gamma rays using the existing accelerator facilities at CERN. To do this, specialized ion beams will be circulated in the SPS and LHC storage rings, which will then be excited using laser beams so that they emit photons. In the selected configuration, the energies of the photons will be within the gamma radiation range of the electromagnetic spectrum. This is of particular interest in connection with spectroscopic analysis of atomic nuclei. Furthermore, the gamma rays will be designed to have a very high intensity, several orders of magnitude higher than those of systems currently in operation.

This sucks.


Per- and polyfluoroalkyl substances (PFAS), found in many household products and food packages, have raised concerns because of their persistence and possible toxicity to people and wildlife. Because the compounds don’t break down naturally, they have become environmental contaminants. Now, researchers reporting in Environmental Science & Technology have studied the transport of 29 PFAS into and out of the Arctic Ocean, detecting a newer compound for the first time in Arctic seawater.

After studies indicated that two PFAS—PFOA and PFOS—can cause cancer, a compromised immune response and other health problems in lab animals, the two compounds were voluntarily phased out by industry. However, these legacy compounds are still widely detected in the environment. Intended as a safer replacement for PFOA, HFPO-DA (sold under the trade name GenX) is now thought to pose similar health and persistence concerns. Hanna Joerss and colleagues wanted to investigate the long-range, oceanic transport of legacy and replacement PFAS to the Arctic Ocean—a remote body of water connected to the Atlantic Ocean by the Fram Strait, which is located between Svalbard and Greenland.

Aboard an icebreaker research ship, the team collected along two Fram Strait currents entering and exiting the Arctic Ocean and along a path from Europe’s North Sea to the Arctic Ocean. Using , the researchers detected 11 PFAS in the , including PFOA, HFPO-DA and other long- and short-chain PFAS. This was the first time that HFPO-DA had been detected in seawater from a remote region, indicating that the compound can be transported long distances. Higher levels of PFAS were detected in the water exiting the Arctic Ocean compared with the water entering the Arctic from the North Atlantic. The PFAS composition in the outgoing water suggested that more of these compounds arose from atmospheric sources than from ocean circulation.

Such great news!!


Tiger numbers are making a “remarkable comeback” in five of the countries the species is found, scientists say.

The big cat populations in Bhutan, China, India, Nepal and Russia are all said to be increasing following the launch of the TX2 initiative a decade ago.

Global conservationists untied for the scheme which sought to double the number of tigers worldwide by 2022 – the Chinese year of the tiger.

We’re going back to Mars! NASA’s Perseverance Mars Rover will be launching soon for its seven-month journey to the Red Planet to search for signs of ancient life. And it’s bringing along a friend: a little helicopter named Ingenuity! Ingenuity will test the first powered flight on Mars.

Join us in wishing Perseverance and Ingenuity “bon voyage” on their #CountdownToMars! https://go.nasa.gov/2CJHidq

What do the loopy straws that children like to sip drinks through have in common with cutting-edge science? Ask Ryan Murphy and his colleagues at the National Institute of Standards and Technology (NIST), where the team has thought up a creative way to explore the properties of fluids under extreme conditions.

The team invented a device that can push fluids through a narrow tube at the velocity of a car hurtling down a rural interstate — about 110 km per hour. This might not sound overly fast to a road tripper, but the tube’s inner diameter is typically 100 micrometers — about the thickness of a human hair. Scaled up, that would be like a train hurtling through a subway tunnel about 100 times faster than a rocket blasting its way into orbit.

To add to the fun, the meter-long tube is coiled up like a spring, so the fluid careens around loop after three-centimeter-wide loop, as though that rocketing subway were a blindingly fast roller coaster that turns somersaults from start to finish.