Page 7620

Oct 4, 2018

Artificial enzymes convert solar energy into hydrogen gas

Posted by in categories: bioengineering, biological, chemistry, genetics, solar power, sustainability

In a new scientific article, researchers at Uppsala University describe how, using a completely new method, they have synthesised an artificial enzyme that functions in the metabolism of living cells. These enzymes can utilize the cell’s own energy, and thereby enable hydrogen gas to be produced from solar energy.

Hydrogen gas has long been noted as a promising carrier, but its production is still dependent on fossil raw materials. Renewable gas can be extracted from water, but as yet the systems for doing so have limitations.

In the new article, published in the journal Energy and Environmental Science, an interdisciplinary European research group led by Uppsala University scientists describe how convert into hydrogen gas. This entirely new method has been developed at the University in the past few years. The technique is based on photosynthetic microorganisms with genetically inserted enzymes that are combined with synthetic compounds produced in the laboratory. Synthetic biology has been combined with synthetic chemistry to design and create custom artificial enzymes inside living organisms.

Continue reading “Artificial enzymes convert solar energy into hydrogen gas” »

Oct 4, 2018

Researchers have discovered how to slow aging

Posted by in categories: food, life extension

Previous research published earlier this year in Nature Medicine involving University of Minnesota Medical School faculty Paul D. Robbins and Laura J. Niedernhofer and Mayo Clinic investigators James L. Kirkland and Tamara Tchkonia, showed it was possible to reduce the burden of damaged cells, termed senescent cells, and extend lifespan and improve health, even when treatment was initiated late in life. They now have shown that treatment of aged mice with the natural product Fisetin, found in many fruits and vegetables, also has significant positive effects on health and lifespan.

Read more

Oct 4, 2018

Deep Space Exploration Could Permanently Damage Human GI Tracts

Posted by in categories: biotech/medical, space travel

Humans aren’t built for deep space exploration. We’ve evolved to live here on Earth with an atmosphere, gravity, and a vitally important magnetic field that deflects high-energy cosmic radiation. It will take all our technological prowess to expand on to other worlds, and it won’t simply be a matter of physically getting there. We also need to preserve delicate human biology. A new study from Georgetown University and NASA suggests it may be much harder than we thought to ensure astronauts maintain healthy gastrointestinal (GI) tract tissue in space.

While doctors expect long-term exposure to high-energy radiation will have myriad effects, it’s difficult to study them in a lab on Earth. The effects of the GI tract are easier to assess because the cells lining this body system are replaced every few days. New cells migrate upward from a structure called a “crypt” to take their places lining the gut. Any disturbance of this mechanism can lead to dysfunction.

The study assessed mice under exposure to different radiation conditions as an analog for humans. They’re much smaller, so they can’t handle as much radiation has a human. However, their GI tracts respond much like ours would from exposure to high-energy particles. The researchers used the NASA Space Radiation Laboratory (NSRL) in Brookhaven National Laboratory to bombard the mice with either simulated galactic cosmic radiation (sometimes called cosmic rays), gamma rays, or no radiation (control group).

Continue reading “Deep Space Exploration Could Permanently Damage Human GI Tracts” »

Oct 4, 2018

Robot masters human balancing act

Posted by in categories: information science, mathematics, robotics/AI, space

By translating a key human physical dynamic skill — maintaining whole-body balance — into a mathematical equation, the team was able to use the numerical formula to program their robot Mercury, which was built and tested over the course of six years. They calculated the margin of error necessary for the average person to lose one’s balance and fall when walking to be a simple figure — 2 centimeters.

“Essentially, we have developed a technique to teach autonomous robots how to maintain balance even when they are hit unexpectedly, or a force is applied without warning,” Sentis said. “This is a particularly valuable skill we as humans frequently use when navigating through large crowds.”

Sentis said their technique has been successful in dynamically balancing both bipeds without ankle control and full humanoid robots.

Read more

Oct 4, 2018

A Nonprofit Plans to Store Human Knowledge in DNA and Store It on the Moon

Posted by in categories: biotech/medical, space

The Arch Foundation plans to encode important books and crowdsourced images into synthetic DNA molecules and store them on the Moon.

Read more

Oct 4, 2018

Human Immature Eggs Made From Blood Cells for the First Time

Posted by in category: biotech/medical

They were right. Last week, writing in Science, a Japanese team reported a formula that transforms human blood cells into immature eggs. With the help of an artificial womb made from mouse ovary cells, the human cells underwent changes to their DNA that mimics those in a 10-week-old, normal human egg.

The resulting eggs are far from full-blown eggs, and they can’t yet be fertilized to create human embryos.

But “this cannot be denied as a spectacular next step,” said Dr. Eli Adashi at Brown University, who was not involved in the study. “Considering how difficult this has been in a human, [this new study] in a way broke the ice.”

Continue reading “Human Immature Eggs Made From Blood Cells for the First Time” »

Oct 4, 2018

Faecal swaps could help stop heart transplants from being rejected

Posted by in category: biotech/medical

Not sure about this, microbiome is known to be quite stable and to revert back to some kind of base line…even after faecal swaps… Curious what that could mean over time.

By Clare Wilson

The key to organ transplants might lie in an unexpected place – the gut. Giving mice a faecal transplant made them more tolerant of a subsequent heart transplant.

Continue reading “Faecal swaps could help stop heart transplants from being rejected” »

Oct 4, 2018

Fluorescent molecule could shed light on the inner workings of the cellular environment

Posted by in categories: biological, genetics

A fluorescent molecule whose luminosity depends upon how fast it can rotate is helping researchers measure how viscous the fluid is inside different parts of a cell.

“There’s a lot of interest in the biophysical field in developing that can be used to characterize the environment inside a cell or any kind of biological compartment,” says Peter Bond, from A*STAR’s Bioinformatics Institute.

Researchers from the United Kingdom and Singapore—including A*STAR scientists such as Bond’s team who led the computational arm of the project—have modeled, developed and tested a molecule comprising two parts; a genetic probe designed to home in on particular proteins, so it can be directed to wherever in a cell that is found; and a molecular rotor—a fluorescent molecule whose fluorescence lasts longer, the slower it spins. A*STAR researchers simulated how this molecule would perform in different microenvironments at scales of millionths or even billionths of a meter.

Continue reading “Fluorescent molecule could shed light on the inner workings of the cellular environment” »

Oct 4, 2018

Bioquark Inc. — Younger Every Day Podcast — Ira Pastor

Posted by in categories: aging, bioengineering, biotech/medical, cryonics, futurism, genetics, health, life extension, neuroscience, transhumanism

Oct 4, 2018

Scientists Have Found a New Way of Storing Information in a Single Atom

Posted by in categories: computing, particle physics

Humanity is producing so much data every single minute that we either need to slow down, or scientists need to crack the problem of finding better ways of storing that data ASAP. Now, new research has taken us one step closer to the ultimate in compact data storage: putting data on a single atom.

As the basic building blocks of all matter, atoms are the smallest object we could possibly store a bit (a 1 or a 0) on, potentially shrinking down the size of existing hard drives by about a thousand times or so, if we can figure out how to get it to work.

Scientists have already made progress in storing bits on atoms, but only on a small scale and in tightly controlled lab conditions, which usually means extremely cold setups.

Continue reading “Scientists Have Found a New Way of Storing Information in a Single Atom” »