Toggle light / dark theme

To get a better look at the world around them, animals constantly are in motion. Primates and people use complex eye movements to focus their vision (as humans do when reading, for instance); birds, insects, and rodents do the same by moving their heads, and can even estimate distances that way. Yet how these movements play out in the elaborate circuitry of neurons that the brain uses to “see” is largely unknown. And it could be a potential problem area as scientists create artificial neural networks that mimic how vision works in self-driving cars.

To better understand the relationship between movement and vision, a team of Harvard researchers looked at what happens in one of the brain’s primary regions for analyzing imagery when animals are free to roam naturally. The results of the study, published Tuesday in the journal Neuron, suggest that image-processing circuits in the primary not only are more active when animals move, but that they receive signals from a movement-controlling region of the brain that is independent from the region that processes what the animal is looking at. In fact, the researchers describe two sets of movement-related patterns in the visual cortex that are based on head motion and whether an animal is in the light or the dark.

The movement-related findings were unexpected, since vision tends to be thought of as a feed-forward computation system in which enters through the retina and travels on neural circuits that operate on a one-way path, processing the information piece by piece. What the researchers saw here is more evidence that the visual system has many more feedback components where information can travel in opposite directions than had been thought.

Tesla and CureVac have collaborated on a patent for an RNA bioreactor.

Although there are no human vaccines made with RNA, the technology could break through on COVID-19 (coronavirus).

The bioreactor works by combining chemical agents in an egg-shaped magnetic mixer.


Tesla has taken on the manufacturing role for a biotech startup with a revolutionary new RNA reactor concept. A tipster recently alerted Electrek to this year-old patent application, which lists both Tesla and German startup CureVac.

MEDAN, Indonesia — Indonesia’s rumbling Mount Sinabung erupted Monday, sending a column of volcanic materials as high as 16,400 feet into the sky and depositing ash on villages.

It is the second eruption since Saturday after the volcano sat dormant for more than a year.

Falling grit and ash accumulated up to 2 inches in already abandoned villages on the volcano’s slopes, said Armen Putra, an official at the Sinabung monitoring post on Sumatra Island.

Before the first oncogene mutations were discovered in human cancer in the early 1980s, the 1970s provided the first data suggesting alterations in the genetic material of tumors. In this context, the prestigious journal Nature published in 1975 the existence of a specific alteration in the transformed cell: an RNA responsible for carrying an amino acid to build proteins (transfer RNA) was missing a piece, the enigmatic nucleotide ‘Y.’

After that outstanding observation, virtually no developments were made for forty-five years on the causes and consequences of not having the correct base in RNA.

In an article published in Proceedings of the National Academy of Sciences (PNAS) by the group of Dr. Manel Esteller, Director of the Josep Carreras Leukaemia Research Institute, ICREA Research Professor and Professor of Genetics at the University of Barcelona has solved this mystery by observing that in the protein that generates the Y is epigenetically inactivated, causing small but highly aggressive tumors.