Toggle light / dark theme

Popular Summary.

Remote entanglement is crucial for quantum computing, sensing, and communication. Traditional methods for entanglement generation often depend on direct interactions between quantum bits (qubits) or the exchange of entangled photons. In this study, we demonstrate an alternative approach, where we create and preserve entanglement between two noninteracting qubits through dissipation into a shared waveguide.

While dissipation is typically viewed as detrimental, tailored dissipation can be harnessed to drive a system into complex quantum states while actively protecting it from decoherence. This approach, known as autonomous stabilization, has been previously used to create entanglement. However, entanglement stabilization has been confined to short distances due to the challenge of engineering shared dissipation between remote sites. Our experiment overcomes this challenge by employing an open waveguide as a one-dimensional photonic bath. We demonstrate that, under appropriate conditions, the interference of photons emitted into a waveguide from two qubits can stabilize them in an entangled stationary state when the qubits are strongly driven. Crucially, we can reconstruct the entangled state despite significant waveguide-induced dissipation by measuring the emitted photons. Our demonstration is made possible by precise control over qubit frequencies and efficient qubit-waveguide interfaces in superconducting circuits.

Eminent physicists assemble to discuss quantum enigmas.

John von Neumann, John Wheeler, Hans Bethe, Robert Serber, Robert Marshak, Abraham Pais, J. Robert Oppenheimer, David Bohm, and Richard Feynman at the Shelter Island Conference of 1947:

https://repository.aip.org/islandora/object/nbla%3A310818


The first Shelter Island Conference on the Foundations of Quantum Mechanics was held from June 2–4, 1947 at the Ram’s Head Inn in Shelter Island, New York. Shelter Island was the first major opportunity since Pearl Harbor and the Manhattan Project for the leaders of the American physics community to gather after the war. As Julian Schwinger would later recall, “It was the first time that people who had all this physics pent up in them for five years could talk to each other without somebody peering over their shoulders and saying, ‘Is this cleared?’”

A team led by scientists at the Department of Energy’s Oak Ridge National Laboratory identified and successfully demonstrated a new method to process a plant-based material called nanocellulose that reduced energy needs by a whopping 21%. The approach was discovered using molecular simulations run on the lab’s supercomputers, followed by pilot testing and analysis.

The method, leveraging a solvent of sodium hydroxide and urea in water, can significantly lower the production cost of nanocellulosic fiber — a strong, lightweight biomaterial ideal as a composite for 3D-printing structures such as sustainable housing and vehicle assemblies. The findings support the development of a circular bioeconomy in which renewable, biodegradable materials replace petroleum-based resources, decarbonizing the economy and reducing waste.

Colleagues at ORNL, the University of Tennessee, Knoxville, and the University of Maine’s Process Development Center collaborated on the project that targets a more efficient method of producing a highly desirable material. Nanocellulose is a form of the natural polymer cellulose found in plant cell walls that is up to eight times stronger than steel.

One contract focuses on Canopy’s transpiration-cooled TBS. Under a second contract, Canopy will embed high-temperature sensors in the TPS material.

Denver-based Canopy was founded in 2021 to develop manufacturing processes that rely on software, automation and 3D-printing to supply heat shields for spacecraft and hypersonic vehicles.

HELSINKI — Senegal’s space agency signed an agreement on cooperation on the International Lunar Research Station Thursday, swelling the ranks of the China-led project.

Maram Kaire, head of the Senegalese Space Study Agency (ASES) and Li Guoping, chief engineer of the China National Space Administration (CNSA) signed the agreement on cooperation in the International Lunar Research Station (ILRS) at the second international conference on deep space exploration (Tiandu) in Tunxi, Anhui province, Sept. 5.

The agreement came as Chinese President Xi Jinping held talks with Senegalese President Bassirou Diomaye Faye. The latter is visiting for the Beijing Summit of the Forum on China-Africa Cooperation (FOCAC) and a state visit.