Toggle light / dark theme

The National Science Foundation has awarded a highly competitive $5 million grant to Vanderbilt University that greatly expands a School of Engineering-led project for creating novel AI technology and tools and platforms that train and support individuals with Autism Spectrum Disorder in the workplace.

The significant federal investment follows a successful $1 million, nine-month pilot grant to the same team that forged partnerships with employers and other stakeholders and produced viable prototypes through immersive, human-centric design. The multi-university team includes Yale University, Cornell University, Georgia Institute of Technology and Vanderbilt University Medical Center as academic partners.

The grant, made through NSF’s Convergence Accelerator program, advances the School of Engineering’s focus on Inclusion Engineering,® which uses the disciplines within engineering to broaden meaningful participation for people who have been marginalized.

For college students studying science, doing labwork as part of their classes is a vital way to learn research skills and better understand concepts from lectures.

That presents a challenge for schools that are operating remotely during the coronavirus pandemic — so some biology programs are mailing brains, eyeballs, and even entire fetal pigs to their students so they can dissect them at home.

At Lafayette College, neuroscience students enrolled in a physiology course recently received packages in the mail that contained preserved sheep brains, which are commonly chosen by schools due to their close resemblance to human brains. Then, neuroscientist and psychologist Luis Schettino — who, in the interest of transparency, was one of my professors when I attended Lafayette — guided his students over a video call as they dissected the brains.


Special delivery!

With thousands of students using the internet to attend class remotely, cybersecurity experts are raising concerns about children becoming targets for hackers. Many Central New York school districts, like the Central Square Central School District, sent laptops home with students. Central Square uses a software called GoGuardian that flags unsafe or inappropriate online material. Superintendent Thomas Colabufo says parents are happy to know that the security feature is in place.

Recently, San Diego Zoo partnered up with the wildlife preservation group Revive and Restore and a pet cloning company ViaGen Equine to create an exact copy of Kuporovic. The embryo was planted in a surrogate mother, a common horse.

Shawn Walker, the chief science officer at ViaGen Equine reports “This new Przewalski’s colt was born fully healthy and reproductively normal. He is head butting and kicking when his space is challenged, and he is demanding milk supply from his surrogate mother.”

This whole deal is not only good news for Przewalski’s horses, because this project demonstrates that we can keep genetic material viable for many years. Thus principles we see in action see here can potentially be applied to other endangered, even extinct species. Yes, you’ve read that right, Revive and Restore hopes to revive a wooly mammoth one day.

The is truly unique; as a single seat (or single plus pillion), twin jet, HSA Motorcycle, it is a world’s first in many ways. At just 2.3m long and under 1m wide, it is the smallest of all Gibbs High speed amphibious platforms, and very probably the most technically advanced. It represents true freedom for the individual; serious fun.

A high-power laser, optimized optical pathway, a patented adaptive resolution technology, and smart algorithms for laser scanning have enabled UpNano, a Vienna-based high-tech company, to produce high-resolution 3D-printing as never seen before.

“Parts with nano- and microscale can now be printed across 12 orders of magnitude—within times never achieved previously. This has been accomplished by UpNano, a spin-out of the TU Wien, which developed a high-end two-photon polymerization (2PP) 3D-printing system that can produce polymeric parts with a volume ranging from 100 to 1012 cubic micrometers. At the same time the printer allows for a nano- and microscale resolution,” the company said in a statement.

Recently the company demonstrated this remarkable capability by printing four models of the Eiffel Tower ranging from 200 micrometers to 4 centimeters—with perfect representation of all minuscule structures within 30 to 540 minutes. With this, 2PP 3D-printing is ready for applications in R&D and industry that seemed so far impossible.