Toggle light / dark theme

Scientists led by Nanyang Technological University, Singapore (NTU Singapore) have developed a novel method of using fruit peel waste to extract and reuse precious metals from spent lithium-ion batteries in order to create new batteries.

The team demonstrated their concept using orange peel, which recovered precious metals from battery waste efficiently. They then made functional batteries from these recovered metals, creating minimal waste in the process.

The scientists say that their waste-to-resource approach tackles both food waste and electronics waste, supporting the development of a circular economy with zero waste, in which resources are kept in use for as long as possible. An estimated 1.3 billion tonnes of food waste and 50 million tonnes of e-waste are generated globally each year.

Circa 2018

Is water wet? – The Answer Wall.


I provided this answer last week: Wetness is a perception, not an objective fact, and perceptual clues for wetness are actually not so straightforward, as you can see in this physiology article: bit.ly/wetness-perception. So, is water wet? Sorta maybe.

Our blue planet having water seems such a simple and obvious fact that the question of why Earth has water at all feels like a trivial one. However, the origin of this key ingredient for life has remained a long-standing topic of debate. According to models of Solar System formation, Earth, as an inner Solar System planet, should have little to no water. On page 1110 of this issue, Piani et al. ([ 1 ][1]) analyze enstatite chondrite meteorites, a material similar to Earth’s main building blocks, and address the origins of Earth’s water.

Early models of planetary formation predicted that the nebular gas near our young Sun was too hot to form ice.

Starship SN6 is aiming to conduct a 150-meter hop test on Sunday, just a few weeks after SN5 completed the first Starship prototype launch. SN6’s test will be a near-mirror of SN5’s short flight, with both prototypes aiming to refine SpaceX’s launch and landing operations. Meanwhile, additional Starships continue to evolve, along with preparations for the Super Heavy booster, which – according to Chief Designer Elon Musk – could conduct an initial test hop by October.

SN5 and SN6:

In another sign of SpaceX Boca Chica’s production cadence, the allowance for SN6 to be ready to hop just weeks after SN5 was aided by having SN6 already assembled in the Mid Bay while SN5 was reaching 150 meters into the South Texas sky.

Summary: Transposable elements team up with evolutionary recent neurons to influence differentiation and physiological function of neurons in brain development.

Source: EPFL

The human genome contains over 4.5 million sequences of DNA called “transposable elements”, these virus-like entities that “jump” around and help regulate gene expression. They do this by binding transcription factors, which are proteins that regulate the rate of transcription of DNA to RNA, influencing gene expression in a broad range of biological events.

Solar flares emit sudden, strong bursts of electromagnetic radiation from the Sun’s surface and its atmosphere, and eject plasma and energetic particles into inter-planetary space. Since large solar flares can cause severe space weather disturbances affecting Earth, to mitigate their impact their occurrence needs to be predicted. However, as the onset mechanism of solar flares is unclear, most flare prediction methods so far have relied on empirical methods.

The research team led by Professor Kanya Kusano (Director of the Institute for Space-Earth Environmental Research, Nagoya University) recently succeeded in developing the first physics-based model that can accurately predict imminent large solar flares. The work was published in the journal Science on July 31, 2020.

The new method of flare prediction, called the kappa scheme, is based on the theory of “double-arc instability,” that is a magnetohydrodynamic (MHD) instability triggered by magnetic reconnection. The researchers assumed that a small-scale reconnection of magnetic field lines can form a double-arc (m-shape) magnetic field and trigger the onset of a solar flare (Figure 1). The kappa scheme can predict how a small magnetic reconnection triggers a large flare and how a large solar flare can occur.