Toggle light / dark theme

Astronomers have applied artificial intelligence (AI) to ultra-wide field-of-view images of the distant Universe captured by the Subaru Telescope, and have achieved a very high accuracy for finding and classifying spiral galaxies in those images. This technique, in combination with citizen science, is expected to yield further discoveries in the future.

A research group, consisting of astronomers mainly from the National Astronomical Observatory of Japan (NAOJ), applied a deep-learning technique, a type of AI, to classify galaxies in a large dataset of images obtained with the Subaru Telescope. Thanks to its high sensitivity, as many as 560,000 galaxies have been detected in the images. It would be extremely difficult to visually process this large number of galaxies one by one with human eyes for morphological classification. The AI enabled the team to perform the processing without human intervention.

Summary: Researchers have made an important discovery about the mechanisms behind learning and memory. Depending on the number of synapses, and their proximity, information is processed and stored differently.

Source: University of Montreal

How does our brain store information?

But Ford appears to have found a unique way to use a robot. We’ve seen some interesting applications for Boston Dynamics’ Spot robot, and the latest takes the 70-pound dog-like robot to the floors of a Ford transmission manufacturing plant.

These plants are reportedly so old — and have been re-tooled so many times — that Ford is unsure as to whether it possesses accurate floor plans. With an end goal of modernizing and retooling these plants, Ford is using Spot’s laser scanning and imaging technology to travel the plants so they can produce a detailed map.

According to TechCrunch, the manual facility mapping process is time-intensive, with lots of stops and starts as cameras are set up and repositioned station to station. By using two continuously roving robots, Ford can do the job in about half the time. The other benefit is Spot’s size: these little critters can access areas that humans can’t easily get to, and with five cameras they can sometimes provide a more complete picture of their surroundings.

Biologists often speak of switching genes on and off to give microbes new abilities–like producing biofuels or drugs, or gobbling up environmental toxins. For the most part, though, it’s nearly impossible to turn off a gene without deleting it (which means you can’t turn it on again). This limits biologists’ ability to control how much of a particular protein a microbe produces. It also restricts bioengineers’ ability to design new microbes.

Now researchers at Boston University, led by biomedical engineering professor James Collins, have developed a highly tunable genetic “switch” that offers a greater degree of control over microbes. It makes it possible to stop the production of a protein and restart it again. The switch, which could be used to control any gene, can also act as a “dimmer switch” to finely tune how much protein a microbe would produce over time.

The researchers made a highly effective microbe “kill switch” to demonstrate the precision of the approach. For years, researchers have been trying to develop these self-destruction mechanisms to allay concerns that genetically engineered microbes might prove impossible to eradicate once they’ve outlived their usefulness. But previous kill switches haven’t offered tight enough control to pass governmental regulatory muster because it was difficult to make it turn on in all the cells in a population at the same time.

Vanadium could be used for outer hulls of spaceships to absorb sun like energy or higher.

Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys with emphasis on the V-15Cr-5Ti alloy, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R&D) needs are defined.

The relatively high thermal conductivity and low thermal expansion coefficient of vanadium-base alloys, which result in lower thermal stresses for a given heat flux compared to most other candidate alloys, should enhance the reactor wall-load and lifetime capability. Since the mechanical strength of vanadium-base alloys is retained at relatively high temperatures, higher operating temperatures are projected for these alloys than for austenitic or ferritic steels. The refractory metals, including vanadium, characteristically exhibit good corrosion resistance in purified liquid metals. The vanadium alloys also exhibit favorable neutronic properties which include lower parasitic neutron absorption leading to better tritium breeding performance, lower bulk nuclear heating rates, and lower helium generation rates compared to the steels.

Light, sound, and now, heat — just as optical invisibility cloaks can bend and diffract light to shield an object from sight, and specially fabricated acoustic metamaterials can hide an object from sound waves, a recently developed thermal cloak can render an object thermally invisible by actively redirecting incident heat.

The system, designed by by scientists at the Nanyang Technological University (NTU) in Singapore, has the potential to fine-tune temperature distribution and heat flow in electronic and semiconductor systems. It has application in devices with high requirements for efficient dissipation and homogenous thermal expansion, such as high-power engines, magnetic resonance imaging (MRI) instruments, and thermal sensors.

“Because of its shape flexibility, the active thermal cloak might also be applied in human garments for effective cooling and warming, which makes a lot of sense in tropical areas such as Singapore,” said Prof. Baile Zhang of NTU.