Toggle light / dark theme

If a tree falls in a forest and no one is there to hear it, does it make a sound? Perhaps not, some say.

And if someone is there to hear it? If you think that means it obviously did make a sound, you might need to revise that opinion.

We have found a new paradox in quantum mechanics – one of our two most fundamental scientific theories, together with Einstein’s theory of relativity – that throws doubt on some common-sense ideas about physical reality.

Amazon’s Prime Air drone delivery plans scored a boost on Thursday. The Federal Aviation Administration approved an exemption allowing the company to move forward with operations while working towards formal certification of the MK27 UA aircraft and the airline operations. The approval comes with significant limits, but allows the company to continue development of the platform and supports progress towards the necessary certifications.

The relief provided in this 44807 exemption would enable the Amazon MK27 unmanned aircraft (MK27 UA) and associated aircraft systems (MK27 UAS) to operate in cargo delivery operations without an airworthiness certificate. The FAA concludes that Amazon’s compliance with the conditions and limitations of this exemption, along with the FAA’s safety evaluation of the MK27 UAS, will enable Amazon’s operations using the MK27 UAS without adversely affecting safety. Amazon is currently engaged in the process to receive a type certificate for the MK27 UAS utilized in its operations.

The embryos, which were not allowed to develop past 28 days of age, move researchers a small step closer to perhaps growing human organs for medical transplant.

Every hour, six people in the United States are added to the national waiting list for organ transplants—and each day, 22 people on the list die waiting. In the U.S. alone, more than a hundred thousand people need heart transplants each year, but only about 2,000 receive one.

In response, researchers are working to artificially expand the organ supply. Some are trying to 3D print organs in the lab. Others are working on artificial, mechanical organs. And some are making chimeras—hybrids of two different species—in the hopes of growing human organs in pigs or sheep.

Reaction Engines and Britain’s Science and Technology Facilities Council (STFC) have completed a concept study into the practicality of using ammonia as a jet aviation fuel. By teaming Reaction Engines’s heat exchanger technology with STFC’s advanced catalysts, they hope to produce a sustainable, low-emission propulsion system for tomorrow’s aircraft.

Modern jet engines use a variety of fuels based on kerosene that have a very high energy density that can propel aircraft well beyond the speed of sound and carry passengers and cargoes across the globe. Unfortunately, such fuels are also derived from fossil fuels and produce significant carbon dioxide emissions, which the airline industry and many governments have pledged to reduce radically by 2050.

One way of achieving these cuts is to look at alternatives to conventional jet fuels to power airliners. The problem is that most of these alternatives have much lower energy densities than standard aviation fuels and suffer from other drawbacks. For example, present-day battery technology would require future aircraft to be very small, short-range, and with little payload capacity. Meanwhile, liquid hydrogen could be a viable alternative, but so much of it would need to be carried that planes would have to be completely redesigned and new infrastructure built.

Plants have a seemingly effortless skill – turning sunlight into energy – and scientists have been working to artificially emulate this photosynthesis process. The ultimate benefits for renewable energy could be huge – and a new approach based on ‘photosheets’ could be the most promising attempt we’ve seen so far.

The new device takes CO2, water, and sunlight as its ingredients, and then produces oxygen and formic acid that can be stored as fuel. The acid can either be used directly or converted into hydrogen – another potentially clean energy fuel.

Key to the innovation is the photosheet — or photocatalyst sheet — which uses special semiconductor powders that enable electron interactions and oxidation to occur when sunlight hits the sheet in water, with the help of a cobalt-based catalyst.

Brownian motion of particles in fluid is a common collective behavior in biological and physical systems. In a new report on Science Advances, Kai Leong Chong, and a team of researchers in physics, engineering, and aerospace engineering in China, conducted experiments and numerical simulations to show how the movement of vortices resembled inertial Brownian particles. During the experiments, the rotating turbulent convective vortical flow allowed the particles to move ballistically at first and diffusively after a critical time in a direct behavioral transition—without going through a hydrodynamic memory regime. The work implies that convective vortices have inertia-induced memory, so their short-term movement was well-defined in the framework of Brownian motion here for the first time.

Brownian motion

Albert Einstein first provided a theoretical explanation to Brownian motion in 1905 with the movement of pollen particles in a thermal bath, the phenomenon is now a common example of stochastic processes that widely occur in nature. Later in 1908, Paul Langevin noted the inertia of particles and predicted that their motion would be ballistic within a short period of time, changing to diffuse motion after a specific timeline. However, due to the rapidity of this transition, it took more than a century for researchers to be able to directly observe the phenomenon. Nevertheless, the “pure” Brownian motion predicted by Langevin was not observed in liquid systems and the transition spanned a broad range of time scales. The slow and smooth transition occurred due to the hydrodynamic memory effect, to ultimately generate long-range correlations.

Could speed up healing.


Wound healing in mammalian skin often results in fibrotic scars, and the mechanisms by which original nonfibrotic tissue architecture can be restored are not well understood. Here, Wei et al. have shown that pharmacological activation of the nociceptor TRPA1, which is found on cutaneous sensory neurons, can limit scar formation and promote tissue regeneration. They confirmed the efficacy of TRPA1 activation in three different skin wounding mouse models, and they also observed that localized activation could generate a response at distal wound sites. TRPA1 activation induced IL-23 production by dermal dendritic cells, which activated IL-17–producing γδ T cells and promoted tissue regeneration. These findings provide insight into neuroimmune signaling pathways in the skin that are critical to mammalian tissue regeneration.

Adult mammalian wounds, with rare exception, heal with fibrotic scars that severely disrupt tissue architecture and function. Regenerative medicine seeks methods to avoid scar formation and restore the original tissue structures. We show in three adult mouse models that pharmacologic activation of the nociceptor TRPA1 on cutaneous sensory neurons reduces scar formation and can also promote tissue regeneration. Local activation of TRPA1 induces tissue regeneration on distant untreated areas of injury, demonstrating a systemic effect. Activated TRPA1 stimulates local production of interleukin-23 (IL-23) by dermal dendritic cells, leading to activation of circulating dermal IL-17–producing γδ T cells. Genetic ablation of TRPA1, IL-23, dermal dendritic cells, or γδ T cells prevents TRPA1-mediated tissue regeneration.

TerraVis™ system — a platform for versatile and cost-effective solar power integrations for pick-up trucks. This groundbreaking innovation is the very first to combine practical, durable tonneau covers with a cutting-edge solar generation and energy storage system. This website launch marks the first release of design and application-related details.


Terravis | the future by worksport | welcome: terravis.

Assembly of the Plasma Liner Experiment (PLX) at Los Alamos National Laboratory is well underway with the installation of 18 of 36 plasma guns in an ambitious approach to achieving controlled nuclear fusion (top image). The plasma guns are mounted on a spherical chamber, and fire supersonic jets of ionized gas inward to compress and heat a central gas target that serves as fusion fuel. In the meantime, experiments performed with the currently installed plasma guns are providing fundamental data to create simulations of colliding plasma jets, which are crucial for understanding and developing other controlled fusion schemes.

Most fusion experiments employ either magnetic confinement, which relies on powerful magnetic fields to contain a fusion plasma, or inertial confinement, which uses heat and compression to create the conditions for fusion.