Toggle light / dark theme

A team of researchers from the Max Planck Institute for the Science of Light and Friedrich-Alexander University Erlangen has found a way to prove a theory suggesting the possibility of cloaking a nanoparticle using a single molecule—by nearly doing it with a gold nanoparticle and a dibenzoterrylene molecule. In their paper published in the journal Physical Review Letters, the group describes their experiments with coupled nanoparticles and molecules, and what they learned from them.

For several years, scientists have been experimenting with coupling and molecules. In most such work, the nanoparticle (which is generally larger than the molecule) serves as an antenna of sorts, funneling light to the molecule. The goal has been to boost the emissions from the molecule or to absorb the light they receive—both of which can be used to detect biomolecules under certain circumstances. In other work, researchers have looked into the possibility of controlling the emissions coming from the molecule to match the wavelength of the incoming . In theory, if they are in phase, the nanoparticle’s shadow should dissipate or disappear completely—a form of cloaking. In this new effort, the researchers sought to prove this theory by carrying out experiments with nanoparticles and molecules.

The work involved first getting a130-nm-wide gold nanoparticle to couple with a dibenzoterrylene molecule. This involved placing several of the on a surface and then covering them with a solution containing dibenzoterrylene . The setup was then chilled to the point that the solution solidified. The team then used a laser to look for a test nanoparticle-molecule pairing until they found a pair that had closely coupled. They then focused a near-infrared beam on the pair, from the direction of the molecule.

The Jet Capsule isn’t an ugly duckling by any means, but designer Pierpaolo Lazzarini imagines a beautiful swan with his latest creation, the Avanguardia. The mega-yacht would feature a small watercraft that would serve as a removable cockpit in this ambitious conceptual project.

The Avanguardia (Vanguard in English) is inspired by an unspecified Japanese Manga from the 1970s and its defining feature is that long “neck.” The idea is that the neck would serve as a crane and could be used to safely deposit a smaller craft in the water when anchor’s dropped, allowing it to be used to reach shore, for example. Interestingly, the neck would actually be placed in a lowered back position while sailing – so presumably the raised position depicted above would end up mostly being used for showing off at port.

“Due to an extendable crane/bridge located in the bow (front) in this case named ‘neck,’ the head can be dropped off and used as an auxiliary 16-meter [52-ft] boat,” explains Lazzarini Design Studio. “During the sailing, the head ‘control tower cockpit’ adjusts its position by lowering in the middle of the mega-yacht body (like a swan, the neck goes in the middle of the wings).”

Mid-infrared lasers have been widely used in imaging, detection, diagnostics, environmental monitoring, medicine, industry, defense and others. For mid-infrared laser systems, low phonon energy gain materials are key factors.

Among these mid-infrared materials, Er3+-doped CaF2 transparent ceramics are promising candidate materials because of their ultra-low phonon energy as well as excellent physical, chemical, and , which quickly attract the attention of researchers. However, traditional preparation methods can’t obtain high-quality Er3+-doped CaF2 transparent ceramics.

Recently, a research team led by Prof. Zhang Long from the Shanghai Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has developed a high quality Er3+-doped CaF2 transparent ceramics by single crystal ceramization. Their study was published in Journal of the European Ceramic Society.

Circa 2018 o,.o!


Dental fillings may soon be left in the ash heap of history, thanks to a recent discovery about a drug called Tideglusib.

Developed for and trialled to treat Alzheimer’s disease, last year scientists found the drug also happens to promote the natural tooth regrowth mechanism in mice, allowing the tooth to repair cavities.

Tideglusib works by stimulating stem cells in the pulp of teeth, the source of new dentine. Dentine is the mineralised substance beneath tooth enamel that gets eaten away by tooth decay.

WASHINGTON — Northrop Grumman announced it will not move forward with the development of the OmegA rocket. The vehicle was designed for the sole purpose of competing for a National Security Space Launch contract award but didn’t make the cut.

“We have chosen not to continue development of the OmegA launch system at this time,” Northrop Grumman spokeswoman Jennifer Bowman said in a statement. “We look forward to continuing to play a key role in National Security Space Launch missions and leveraging our OmegA investments in other activities across our business.”

Bowman said the company will not be protesting the U.S. Space Force’s decision to select United Launch Alliance and SpaceX for the NSSL contracts.

One of the most consumed drugs in the US – and the most commonly taken analgesic worldwide – could be doing a lot more than simply taking the edge off your headache, new evidence suggests.

Acetaminophen, also known as paracetamol and sold widely under the brand names Tylenol and Panadol, also increases risk-taking, according to a new study that measured changes in people’s behaviour when under the influence of the common over-the-counter medication.

“Acetaminophen seems to make people feel less negative emotion when they consider risky activities – they just don’t feel as scared,” says neuroscientist Baldwin Way from The Ohio State University.

Welcome to the future of work!

Changing times demand disruptive solutions, and we know that digital experiences are key to boost human connections and improvements. That’s why we’ve created a brand new way of coding that will shake your world.

Globant presents Augmented Coding, an AI-powered solution that will change forever the software development industry. We are reshaping the future of work with a unique coding vision that is here to stay.

The Milky Way is not alone in its neighborhood. It has captured smaller galaxies in its orbit, and the two largest are known as the Small and Large Magellanic Clouds, visible as twin dusty smears in the Southern Hemisphere.

As the Magellanic Clouds began circling the Milky Way billions of years ago, an enormous stream of gas known as the Magellanic Stream was ripped from them. The stream now stretches across more than half of the night sky. But astronomers have been at a loss to explain how the stream became as massive at it is, over a billion times the mass of the sun.

Now, astronomers at the University of Wisconsin-Madison and their colleagues have discovered that a halo of warm gas surrounding the Magellanic Clouds likely acts as a protective cocoon, shielding the dwarf galaxies from the Milky Way’s own halo and contributing most of the Magellanic Stream’s mass. As the smaller galaxies entered the sphere of the Milky Way’s influence, parts of this halo were stretched and dispersed to form the Magellanic Stream. The researchers published their findings today (September 9, 2020) in the journal Nature.