Menu

Blog

Page 7410

Sep 10, 2020

Researchers Find the Origin and Maximum Mass of Massive Black Holes Observed by Gravitational Wave Detectors

Posted by in categories: cosmology, physics

Through simulations of a dying star, a team of theoretical physics researchers have found the evolutionary origin and the maximum mass of black holes which are discovered by the detection of gravitational waves as shown in Figure 1.

The exciting detection of gravitational waves with LIGO (laser interferometer gravitational-wave observatory) and VIRGO (Virgo interferometric gravitational-wave antenna) have shown the presence of merging black holes in close binary systems.

Sep 10, 2020

Catholic university astrophysicist creates black hole simulation in VR

Posted by in categories: cosmology, virtual reality

A team of researchers from the Instituto de Astrofísica VR Lab at Pontificia Universidad Católica de Chile has released a virtual simulation of the black hole at the center of our galaxy. Known as “Galactic Center VR,” the short video, released on the Chandra X-ray Observatory Youtube channel, offers a 360-degree view of the center of the Milky Way, which takes the viewer through about 500 years of stellar movement.

The simulation puts the viewer in the place of the black hole itself, Sagittarius A*, and allows for full rotation of the camera. The team explains in the video notes that the simulation shows “stellar giants” moving around the galactic center, while “stellar winds” blow off their surfaces to create different colors. Thankfully, they went into a little detail as to what these colors represent. They wrote:

Blue and cyan represent X-ray emission from hot gas with temperatures of tens of millions of degrees, while the red emission shows ultraviolet emission from moderately dense regions of cooler gas with temperatures of tens of thousands of degrees, and yellow shows the cooler gas with the highest densities.

Sep 10, 2020

Researchers reveal a much richer picture of the past with new DNA recovery technique

Posted by in category: biotech/medical

Researchers at McMaster University have developed a new technique to tease ancient DNA from soil, pulling the genomes of hundreds of animals and thousands of plants—many of them long extinct—from less than a gram of sediment.

The DNA extraction method, outlined in the journal Quarternary Research, allows scientists to reconstruct the most advanced picture ever of environments that existed thousands of years ago.

The researchers analyzed permafrost samples from four sites in the Yukon, each representing different points in the Pleistocene-Halocene transition, which occurred approximately 11,000 years ago.

Sep 10, 2020

New computational model stands to make nuclear magnetic resonance an even more powerful tool for researchers

Posted by in categories: chemistry, materials

Scientists at the U.S. Department of Energy’s Ames Laboratory have developed a new computational model that has opened up the potential to make one of their most powerful research tools even more so.

A particularly important tool in a chemist’s arsenal is Nuclear Magnetic Resonance (NMR) spectroscopy. An NMR spectrometer measures the response of atomic nuclei to excitation with radiofrequency waves. This can provide researchers with atomic-level information about the physical, chemical, and electronic properties of materials, including those that are non-crystalline. Dynamic Nuclear Polarization (DNP) NMR is an “ultra” version of NMR, which excites unpaired electrons in radicals and transfers their high spin polarization to the nuclei in the sample being analyzed, resulting in faster, more detailed data. Ames Laboratory has developed DNP-NMR to probe very weak but important chemical signatures, and reduce experimental times from days to minutes.

Computational methods play an important role in experts’ understanding of DNP-NMR, especially for improving the design and execution of experiments using it. Until now, however, the work been limited in scope, and improvements in DNP-NMR techniques have tended to rely on some degree of “serendipity,” according to Fred Perras, an Associate Scientist at Ames Laboratory and a 2020 recipient of a DOE Office of Science Early Career Research Award.

Sep 9, 2020

Space scientists use 3.2 billion-pixel camera to take largest photo ever

Posted by in categories: mobile phones, space

At 250 times the resolution of most smartphone cameras, this camera will reveal facets of the cosmos as scientists have never seen them before.

Sep 9, 2020

China’s First Homegrown Nuclear Reactor Begins Loading Fuel

Posted by in category: nuclear energy

Hualong One development is being closely watched in the battle for the nation’s next-generation nuclear power systems. Its success could mean a nuclear revival in China that would have little to do with western developers including Westinghouse Electric Co. from the U.S. and France’s Electricite de France SA.


China’s homegrown nuclear technology took a significant step forward as a Hualong One reactor began loading fuel for the first time.

China National Nuclear Power Co., a unit of China National Nuclear Corp., said fuel loading started at the Fuqing No. 5 reactor, the first to use the domestic technology, on Sept. 4 after securing an operating license from the nation’s Ministry of Ecology & Environment, according a statement on its WeChat account. No timeline was given for starting up the reactor.

Continue reading “China’s First Homegrown Nuclear Reactor Begins Loading Fuel” »

Sep 9, 2020

Entangled light is unscrambled using entanglement itself

Posted by in category: quantum physics

Natalia Herrera-Valencia and colleagues have successfully unscrambled entangled light after it has passed through a 2 m long multimode fibre. Led by Mehul Malik, the team at the Heriot-Watt University in Edinburgh tackled the challenge using entanglement itself. The research was done in collaboration with a colleague at the University of Glasgow and is described in a recent paper in Nature Physics.

Light passing through a disordered (or “complex”) medium like atmospheric fog or a multimode fibre gets scattered, albeit in a known manner. As a result, the information carried by the light gets distorted but is preserved, and extra steps are needed to access it. This gets especially tricky for the transport of entangled states of light because the medium muddles up the quantum correlations. The states get “scrambled” and “unscrambling” becomes necessary to retrieve the original entangled states.

Sep 9, 2020

Qualitative Test For Proteins

Posted by in category: futurism

This video explains the qualitative test of proteins.

Sep 9, 2020

States Join Automated Security Pilot with MS-ISAC, Johns Hopkins

Posted by in categories: cybercrime/malcode, government, robotics/AI

The promise of artificial intelligence for cybersecurity is that it will free security professionals at government agencies from menial tasks and allow them to focus on threat hunting and higher-level work. Another benefit that might get lost in the shuffle, but is no less important, is that automation in cybersecurity can actually lead to enhanced security for agencies.

Five governments are testing that proposition. Last month, the states of Arizona, Louisiana, Massachusetts and Texas, along with Maricopa County, Ariz., announced a partnership with the Multi-State Information Sharing and Analysis Center and the Johns Hopkins Applied Physics Laboratory (APL) to pilot a cybersecurity automation program.

The agencies will be using security orchestration, automation and response (SOAR) tools, which “enable organizations to collect security-threat data through multiple sources and perform triage response actions significantly faster than with manual processes,” according to a Johns Hopkins press release. The hope is that it will enable the agencies to “quickly and broadly share information — in near real time — and leverage automation to prevent or respond to cyberattacks,” the release states.

Sep 9, 2020

First Photonic Quantum Computer on the Cloud

Posted by in categories: computing, quantum physics

First photonic quantum computer on the cloud.