Menu

Blog

Page 740

Jun 3, 2024

Cambridge Scientists Achieve Long-Sought Quantum State Stability in New 2D Material

Posted by in categories: materials, quantum physics

Scientists at the Cavendish Laboratory have discovered spin coherence in Hexagonal Boron Nitride (hBN) under normal conditions, offering new prospects for quantum technology applications.

Cavendish Laboratory researchers have discovered that a single ‘atomic defect’ in a material known as Hexagonal Boron Nitride (hBN) maintains spin coherence at room temperature and can be manipulated using light.

Spin coherence refers to an electronic spin being capable of retaining quantum information over time. The discovery is significant because materials that can host quantum properties under ambient conditions are quite rare.

Jun 3, 2024

New precision measurement program advances understanding of proton halos

Posted by in category: particle physics

In May 2022, the Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU), launched its precision measurement program. Staff from FRIB’s Low Energy Beam and Ion Trap (LEBIT) facility take high-energy, rare-isotope beams generated at FRIB and cool them to a lower energy state. Afterward, the researchers measure specific particles’ masses at high precision.

Jun 3, 2024

New all-optical approach could miniaturize night vision technology

Posted by in category: futurism

Miniaturizing could therefore lead to widespread adoption. Creating night vision filters that weigh less than a gram and can sit as a film across a pair of traditional spectacles opens up new, everyday applications.

Consumer night vision glasses that allow the user to see the visible and at the same time could result in safer driving in the dark, safer nighttime walks, and less hassle working in low-light conditions that currently require bulky and often uncomfortable headlamps.

In research published in Advanced Materials, TMOS researchers from the Australian National University demonstrate enhanced infrared vision non-linear upconversion technology using a non-local lithium niobate metasurface.

Jun 3, 2024

Scientists Figured Out the Revolutionary Trick for Growing Diamonds at Regular Pressure

Posted by in category: sustainability

The game-changing technique could cut costs and time.

Jun 3, 2024

50 Years Ago, Chimeras Gave a Glimpse of Gene Editing’s Future

Posted by in categories: bioengineering, biotech/medical

Advances in gene editing technology have led to the first successful transplant of a pig kidney into a human.

Jun 3, 2024

Superconductivity: the search and the scandal

Posted by in category: materials

Recent high profile controversies haven’t deterred scientists from searching for one of research’s ultimate prizes: room temperature superconductors. Kit Chapman reports on the claims.

In July 2023, the world became obsessed with superconductivity. Two pre-prints from a group in South Korea claimed that a copper-doped lead-apatite, dubbed LK-99 after its two proposers, Lee Sukbae and Kim Ji-Hoon, was a superconductor at room temperature and ambient pressure. The claims spread across social media, with both seasoned groups and amateur chemists trying to recreate the material. By August, a consensus was reached that LK-99 was yet another dead end, and not a superconductor at all.

Continue reading “Superconductivity: the search and the scandal” »

Jun 3, 2024

AI Chip Breakthrough: Memristors Mimic Neural Timekeeping

Posted by in categories: innovation, robotics/AI

In the brain, timekeeping is done with neurons that relax at different rates after receiving a signal; now memristors—hardware analogs of neurons—can do that too.

Artificial neural networks may soon be able to process time-dependent information, such as audio and video data, more efficiently. The first memristor with a ‘relaxation time’ that can be tuned is reported today in Nature Electronics, in a study led by the University of Michigan.

Energy Efficiency and AI.

Jun 3, 2024

Editing without ‘cutting’: Molecular mechanisms of new gene-editing tool revealed

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics

Joint research led by Yutaro Shuto, Ryoya Nakagawa, and Osamu Nureki of the University of Tokyo determined the spatial structure of various processes of a novel gene-editing tool called “prime editor.” Functional analysis based on these structures also revealed how a “prime editor” could achieve reverse transcription, synthesizing DNA from RNA, without “cutting” both strands of the double helix. Clarifying these molecular mechanisms contributes greatly to designing gene-editing tools accurate enough for gene therapy treatments. The findings were published in the journal Nature.

The 2020 Nobel Prize in Chemistry was awarded to Jennifer Doudna and Emmanuelle Charpentier for developing a groundbreaking yet simple way to edit DNA, the “blueprint” of living organisms. While their discovery opened new avenues for research, the accuracy of the method and safety concerns about “cutting” both strands of DNA limited its use for gene therapy treatments. As such, research has been underway to develop tools that do not have these drawbacks.

The prime editing system is one such tool, a molecule complex consisting of two components. One component is the prime editor, which combines a SpCas9 protein, used in the first CRISPR-Cas gene editing technology, and a reverse transcriptase, an enzyme that transcribes RNA into DNA. The second component is the prime editing guide RNA (pegRNA), a modified guide RNA that identifies the target sequence within the DNA and encodes the desired edit. In this complex, the prime editor works like a “word processor,” accurately replacing genomic information. The tool has already been successfully implemented in living cells of organisms such as plants, zebrafish, and mice. However, precisely how this molecule complex executes each step of the editing process has not been clear, mostly due to a lack of information on its spatial structure.

Jun 3, 2024

Is It Time to Redefine the Singularity?

Posted by in categories: robotics/AI, singularity

What if the singularity heralds not AI dominance, but a profound unity consciousness, connecting human and machine minds into a symbiotic, transcendent intelligence?

Jun 3, 2024

A framework to construct quantum spherical codes

Posted by in categories: computing, quantum physics

To reliably perform complex, large-scale calculations, computing systems rely on so-called error correction schemes, techniques designed to protect information against errors. These techniques are perhaps even more essential when it comes to quantum computers, devices that perform computations leveraging the principles of quantum mechanics.

Page 740 of 11,989First737738739740741742743744Last