Toggle light / dark theme

One of the greatest mysteries in our Universe is right here on our own doorstep. No, closer — it’s in every fibre of our being.

At least 3.7 billion years ago, a few simple molecules worked together to create something new. Then a few more. And, somehow, these snowballing combinations eventually produced the first very basic living organisms that would evolve and branch out to become all life on Earth.

We don’t know the order it happened in; heck, we don’t even know when or where it happened. But new research is showing us the possibilities.

An international team of Johannes Kepler University researchers is developing robots made from soft materials. A new article in the journal Communications Materials demonstrates how these kinds of soft machines react using weak magnetic fields to move very quickly—even grabbing a quick-moving fly that has landed on it.

When we imagine a moving machine, such as a robot, we picture something largely made out of hard materials, says Martin Kaltenbrunner. He and his team of researchers at the JKU’s Department of Soft Matter Physics and the LIT Soft Materials Lab have been working to build a -based system. When creating these kinds of systems, there is a basic underlying idea to create conducive conditions that support close robot-human interaction in the future—without the solid machine physically harming humans.

Over the coming months, operations will begin at three existing underground detectors — in the United States, Italy and China — that search for dark-matter particles by looking for interactions in supercooled vats of xenon. Using a method honed over more than a decade, these detectors will watch for telltale flashes of light when the nuclei recoil from their interaction with dark-matter particles.


Researchers have spent decades searching for the elusive particles — a final generation of detectors should leave them no place to hide.

Science typically begins with a question. It may be: “How will astronauts maintain a nutritious diet on long-duration missions?” Or “How can the way metals are made be improved by studying them in space?” These are just two of the questions researchers seek to answer with the upcoming launch of new research, technology demonstrations, and commercial products headed to our unique microgravity laboratory orbiting Earth.

NASA uses the spaceflight environment to further our understanding of how to successfully live and work in space. These space experiments help us understand the effects of radiation, microgravity and other factors on life and physical systems. It is also an important aspect in understanding how to sustain life on the Moon and eventually Mars.

On Friday, October 2, 2020, at 9:16 p.m. EDT, new space experiments and a new space toilet launched on Northrop Grumman’s 14th commercial resupply mission for the agency to the International Space Station.

Summary: A patient who suffered brain injury can temporarily walk, talk, and recognize family members thanks to the sleep medication Zolpidem.

Source: Radboud University

A patient who could not move and talk spontaneously for eight years started to do so again after being administered a sleeping pill. The spectacular but temporary effect was visualized with brain scans, giving researchers from Radboud university medical center and Amsterdam UMC a better understanding of this disorder’s underlying neurophysiological processes. The article has been published in Cortex.

Summary: The ability to foster and form secure interpersonal attachments can mitigate some of the genetic risks associated with PTSD.

Source: Yale

Researchers at Yale and elsewhere previously identified a host of genetic risk factors that help explain why some veterans are especially susceptible to the debilitating symptoms of post-traumatic stress disorder (PTSD).