Toggle light / dark theme

It looks like our food for the future will be bugs. A factory in France will grow bugs as a food source.


Enter the insects. Or, more appropriately in this case, enter Ÿnsect, the French company with big ambitions to help change the way the world eats. Ÿnsect raised $125 million in Series C funding in early 2019, and at the time already had $70 million worth of aggregated orders to fill. Now they’re building a bug-farming plant to churn out tiny critters in record numbers.

You’ve probably heard of vertical farms in the context of plants; most existing vertical farms use LED lights and a precise mixture of nutrients and water to grow leafy greens or other produce indoors. They maximize the surface area used for growing by stacking several layers of plants on top of one another; the method may not make for as much space as outdoor fields have, but can yield a lot more than you might think.

Ÿnsect’s new plant will use layered trays too, except they’ll be cultivating beetle larvae instead of plants. The ceilings of the facility are 130 feet high—that’s a lot of vertical space to grow bugs in. Those of us who are grossed out by the thought will be glad to know that the whole operation will be highly automated; robots will tend to and harvest the beetles, and AI will be employed to keep tabs on important growing conditions like temperature and humidity.

A team of astronomers at the University of Hawaiʻi at Mānoa Institute for Astronomy (IfA) has produced the world’s largest three-dimensional astronomical imaging catalog of stars, galaxies and quasars. The team used data from UH’s Panoramic Survey Telescope and Rapid Response System or Pan-STARRS1 (PS1) on Haleakalā. The PS1 3π survey is the world’s largest deep multi-color optical survey, spanning three-quarters of the sky. IfA astronomers applied novel computational tools to the catalog, to decipher which of the 3 billion objects are stars, galaxies or quasars. For the galaxies, the software also derived estimates of their distances.

The resulting 3D catalog is now available as a high-level science product through the Mikulski Archive for Space Telescopes. It is approximately 300 GB in size, and science users can query the catalog through the MAST CasJobs SQL interface, or download the entire collection as a computer-readable table.

Summary: Boosting levels of the DUSP4 protein could be a novel way of preventing and treating epilepsy.

Source: University of Illinois

Epileptic seizures often originate in small, localized areas of the brain where neurons abnormally fire in unison. These electrical impulses disrupt proper brain functioning and cause seizures. But what makes regions where seizures start different from parts of the brain where electrical impulses remain normal? More importantly, what prevents these epileptic centers from growing?

This latest IoT security warning is hard to believe…


Warnings that our IoT devices might be spying on us are nothing new—remember the smart speaker fiasco last year? But at least we expect those devices to be listening and can exercise some caution. The latest such warning, though, takes these risks to a new level. It turns out that there may be surprising little spies hiding in our living rooms.

Last December, the FBI warned that the perilous state of IoT security means that “hackers can use an innocent device to do a virtual drive-by of your digital life.” A week earlier, that same FBI office had cautioned on the danger that smart TVs can allow “manufacturers, streaming services, and even hackers an open door into your home.”

Now a new security report from the team at Guardicore, issued today, has combined those two FBI alerts, showing just how easy it is to exploit vulnerabilities in our everyday devices. And this isn’t a data theft risk—it’s much more creepy, playing like something from a spy thriller. It’s an attack scenario that “conjures up the famous ‘van parked outside’ scene in every espionage film in recent memory,” Guardicore says.

As tiny particles traveling at the speed of light, it’s going to take a serious machine to capture photons in action, and an international team of researchers have just pieced together one that is very much up for the job. Dubbed the world’s fastest UV camera, the device is capable of capturing ultra-fast events lasting just a picosecond, quick enough to see UV photons fly through the air in real time.

The device is the handiwork of Canada’s Institut National de la Recherche Scientifique (National Institute of Research) and goes by the name of UV-CUP (compressed ultrafast photography). CUP is an emerging imaging technique that has been used to capture ultrafast events at speeds measured in trillions of frames a second, but has so far been limited to visible and near-infrared wavelengths.

“Many phenomena that occur on very short time scales also take place on a very small spatial scale,” says Jinyang Liang, who led the study. “To see them, you need to sense shorter wavelengths. Doing this in the UV or even X-ray ranges is a remarkable step toward this goal.”

Quantum mechanics, the physics of atoms and subatomic particles, can be strange, especially compared to the everyday physics of Isaac Newton’s falling apples. But this unusual science is enabling researchers to develop new ideas and tools, including quantum computers, that can help demystify the quantum realm and solve complex everyday problems.

That’s the goal behind a new U.S. Department of Energy Office of Science (DOE-SC) grant, awarded to Michigan State University (MSU) researchers, led by physicists at Facility for Rare Isotope Beams (FRIB). Working with Los Alamos National Laboratory, the team is developing algorithms – essentially programming instructions – for quantum computers to help these machines address problems that are difficult for conventional computers. For example, problems like explaining the fundamental quantum science that keeps an atomic nucleus from falling apart.

The $750,000 award, provided by the Office of Nuclear Physics within DOE-SC, is the latest in a growing list of grants supporting MSU researchers developing new quantum theories and technology.