Toggle light / dark theme

“The logistics of clinical testing don’t let you sample everybody, but sewage does sample everybody.”-Steve Hrudey.


Raw sewage being flushed into Alberta’s municipal wastewater plants could help public health officials better track — and predict — the spread of COVID-19.

A team of Alberta scientists has joined a growing international effort to sample wastewater for traces of SARS-CoV-2, the virus responsible for the disease.

Quantum computers can solve problems in seconds that would take “ordinary” computers millennia, but their sensitivity to interference is majorly holding them back. Now, researchers claim they’ve created a component that drastically cuts down on error-inducing noise.
» Subscribe to Seeker! http://bit.ly/subscribeseeker
» Watch more Elements! http://bit.ly/ElementsPlaylist
» Visit our shop at http://shop.seeker.com

Quantum computers use quantum bits, or qubits, which can represent a one, a zero, or any combination of the two simultaneously. This is thanks to the quantum phenomenon known as superposition.

Another property, quantum entanglement, allows for qubits to be linked together, and changing the state of one qubit will also change the state of its entangled partner.

Thanks to these two properties, quantum computers of a few dozen qubits can outperform massive supercomputers in certain very specific tasks. But there are several issues holding quantum computers back from solving the world’s toughest problems, one of them is how prone qubits are to error.

Articel from Unilad. The article contains a You Tube video as well on the car’s flight. It looks fantastic to me. To think that flight technology can be made this compact.

It’s not really like the flying car’s we see in sci-fi films, but this may be the first step. Besides, I’m not sure flying cars were practical anyway.

Maybe, this will find it’s own niche. But who knows what the future will bring.


The great powerful guppy can essentially evolve 10 million times faster than usual. Which could lead to humans evolving faster too leading to a biological singularity.


Although natural selection is often viewed as a slow pruning process, a dramatic new field study suggests it can sometimes shape a population as fast as a chain saw can rip through a sapling. Scientists have found that guppies moved to a predator-free environment adapted to it in a mere 4 years—a rate of change some 10,000 to 10 million times faster than the average rates gleaned from the fossil record. Some experts argue that the 11-year study, described in today’s issue of Science,* may even shed light on evolutionary patterns that occur over eons.

A team led by evolutionary biologist David Reznick of the University of California, Riverside, scooped guppies from a waterfall pool brimming with predators in Trinidad’s Aripo River, then released them in a tributary where only one enemy species lurked. In as little as 4 years, male guppies in the predator-free tributary were already detectably larger and older at maturity when compared with the control population; 7 years later females were too. Guppies in the safer waters also lived longer and had fewer and bigger offspring.

The team next determined the rate of evolution for these genetic changes, using a unit called the darwin, or the proportional amount of change over time. The guppies evolved at a rate between 3700 and 45,000 darwins. For comparison, artificial-selection experiments on mice show rates of up to 200,000 darwins—while most rates measured in the fossil record are only 0.1 to 1.0 darwin. “It’s further proof that evolution can be very, very fast and dynamic,” says Philip Gingerich, a paleontologist at the University of Michigan, Ann Arbor. “It can happen on a time scale that’s as short as one generation—from us to our kids.”

After years of detective work, scientists working on the European Space Agency (ESA) Rosetta mission have now been able to locate where the Philae lander made its second and penultimate contact with the surface of Comet 67P/Churyumov-Gerasimenko on 12 November 2014, before finally coming to a halt 30 metres away. This landing was monitored from the German Aerospace Center Philae Control Center. Philae left traces behind; the lander pressed its top side and the housing of its sample drill into an icy crevice in a black rocky area covered with carbonaceous dust. As a result, Philae scratched open the surface, exposing ice from when the comet was formed that had been protected from the Sun’s radiation ever since. The bare, bright icy surface, the outline of which is somewhat reminiscent of a skull, has now revealed the contact point, researchers write in the scientific publication Nature.

All that was known previously was the location of the first contact, that there had been another impact following the rebound, and the location of the final landing site where Philae came to rest after two hours and where it was found towards the end of the Rosetta mission in 2016. “Now we finally know the exact place where Philae touched down on the comet for the second time. This will allow us to fully reconstruct the lander’s trajectory and derive important scientific results from the telemetry data as well as measurements from some of the instruments operating during the landing process,” explains Jean-Baptiste Vincent from the DLR Institute of Planetary Research, who was involved in the research published today. “Philae had left us with one final mystery waiting to be solved,” says ESA’s Laurence O’Rourke, the lead author of the study.

Circa 2015.


LEDs have come a long ways. From the early 70s when a bulky LED watch cost thousands of dollars to LG’s announcement last month that it had created an OLED TV as thin as a magazine, these glowing little bits of magic have become wonderfully cheap and impossibly small. But guess what: they’re about to get much smaller.

A team scientists from the University of Washington just built the world’s thinnest possible LED for use as a light source in electronics. It’s just three atoms thick. No, not three millimeters. Not three nanometers. Three atoms.

“These are 10,000 times smaller than the thickness of a human hair, yet the light they emit can be seen by standard measurement equipment,” said Jason Ross, a UW materials scientist and graduate student who helped with the research. “This is a huge leap of miniaturization of technology, and because it’s a semiconductor, you can do almost everything with it that is possible with existing, three-dimensional silicon technologies.”