Toggle light / dark theme

O,.o.


As superconducting qubit circuits become more complex, addressing a large array of qubits becomes a challenging engineering problem. Dense arrays of qubits benefit from, and may require, access via the third dimension to alleviate interconnect crowding. Through-silicon vias (TSVs) represent a promising approach to three-dimensional (3D) integration in superconducting qubit arrays—provided they are compact enough to support densely-packed qubit systems without compromising qubit performance or low-loss signal and control routing. In this work, we demonstrate the integration of superconducting, high-aspect ratio TSVs—10 μm wide by 20 μm long by 200 μm deep—with superconducting qubits. We utilize TSVs for baseband control and high-fidelity microwave readout of qubits using a two-chip, bump-bonded architecture. We also validate the fabrication of qubits directly upon the surface of a TSV-integrated chip. These key 3D-integration milestones pave the way for the control and readout of high-density superconducting qubit arrays using superconducting TSVs.

At 870 degrees Fahrenheit and 90 times Earth’s atmospheric pressure, we’re going to need something a little more robust than your Macbook to run future rovers.


Humanity has sent four rovers to Mars, and worldwide there are four more missions in the works to continue populating the red planet with robotic explorers. Why haven’t we sent a rover to Venus, our other next door planetary neighbor? Because the caustic surface of Venus will incinerate electronics with its 872º F temperatures and seize mechanical components with its immense atmospheric pressures. At 90 times the surface pressure of Earth, the surface of Venus is the equivalent of being almost 3,000 feet underwater.

The Great Galactic Ghoul might devour half the spacecraft we send to Mars, but Venus torched any ghouls living there long ago.

Fortunately, NASA recently took a big step toward achieving the dream of a Venusian rover. As reported by Ars Technica, researchers at the NASA Glenn Research Center built a computer chip that survived Venus-like conditions for an impressive 521 hours, almost 22 days. Even then, the experiment had to end not because the chip was breaking down, but because the Glenn Extreme Environments Rig (GEER) —the chamber that maintains simulated Venus temperatures and pressures—needed to be shut down after running for over three weeks straight.

Astrobiology students cultivated leafy greens, sweet potatoes, and even hops in simulated Martian dirt.

NASA and private entrepreneurs are pushing to land people on Mars within the next generation. To survive on Mars, colonists will need a lot of gear, not least of which is food. Since lugging food adds a lot of weight to spacecraft — and packaged food only retains its nutrients for so long, anyway — any would-be Martians will need to grow food on site in order to survive.

But conditions on the Red Planet are different than on Earth. The surface receives less than half the amount of sunlight that Earth does, and dust in the atmosphere can attenuate it even more. Due to the absence of an ozone layer, more ultraviolet radiation reaches the ground. As to the Martian surface itself, the dirt (technically “regolith”) is more iron-rich, particularly in iron oxides.

The next decade is going to be a transforming decade as many many technologies (some of which we all like to share in this group) are converging and maturing enough to rearrange our society in almost any aspect we can conceive.

I’m calling to those who are interested in creating and implementing an alternative model for the current social and governance systems, let’s build an open state that we can all support and trust regardless of our age, sex, geographical location, or belief system.

In the next 10 years, key technologies will converge to completely disrupt the five foundational sectors—information, energy, food, transportation, and materials—that underpin our global economy. We need to make sure the disruption benefits everyone.

Today we catch up on all the latest Starship and Super Heavy updates. Go over recent Dragon news. Talk Starlink and other upcoming missions, and finish with today’s Honorable Mention.

SUBSCRIBE: https://www.youtube.com/spacexcentric

BECOME AN XCENTRIC MEMBER: https://www.youtube.com/spacexcentric/join

SUPPORT ON PATREON: https://www.patreon.com/spaceXcentric

This heartfelt documentary follows their journey.

Subscribe: https://bit.ly/39caHHE

About Netflix:
Netflix is the world’s leading streaming entertainment service with 193 million paid memberships in over 190 countries enjoying TV series, documentaries and feature films across a wide variety of genres and languages. Members can watch as much as they want, anytime, anywhere, on any internet-connected screen. Members can play, pause and resume watching, all without commercials or commitments.

Find Netflix Malaysia on:

Tesla CEO Elon Musk in July urged miners to produce more nickel, a key ingredient in the batteries that power the company’s electric cars. Musk offered a “giant contract” if supplies could be produced in an environmentally sensitive way.

While EVs are expected to help reduce global carbon emission, environmentalists are concerned that production of EV parts and increased mining may damage the environment.

Terms such as ‘Artificial Intelligence’ or ‘Neurotechnology’ were new some time not so long ago. We can’t evolve faster than our language does. We think in concepts and evolution itself is a linguistic, code-theoretic process. Do yourself a humongous favor, look over these 33 transhumanist neologisms. Here’s a fairly comprehensive glossary of thirty three newly-introduced concepts and terms from The Syntellect Hypothesis: Five Paradigms of the Mind’s Evolution by Russian-Amer… See More.