Menu

Blog

Page 7388

Jul 2, 2020

How Transparent Graphene Electrodes Could Aid Solar Cell Generation

Posted by in categories: particle physics, solar power, sustainability

A new technique of manufacturing graphene could revolutionize solar power by enabling the creation of ultra-lightweight, flexible solar panels.

A novel technique developed by researchers at the Michigan Institute of Technology (MIT) that allows for the creation of large sheets of graphene — a layer of single carbon atoms extracted from graphite — could have a significant impact on the development of future electronic devices.

In particular, the development could give a significant boost to the field of solar power where graphene is used as a replacement for indium tin oxide (ITO) in the creation of electrodes. The resultant transparent and light electrodes can bend up to 78 ⁰ — much more flexible than traditional ITO electrodes.

Jul 2, 2020

Four-charm tetraquark has been spotted at CERN

Posted by in category: particle physics

The first tetraquark comprising all charm quarks and antiquarks may have been spotted by physicists working on the LHCb experiment on the Large Hadron Collider (LHC) at CERN. The exotic hadron was discovered as it decayed into two J/ψ mesons, each of which is made from a charm quark and charm antiquark. The particle appears to be the first known tetraquark to be made entirely of “heavy quarks”, which are the charm and beauty quarks (but not the top quark, which is the heaviest quark but does not form hadrons).

“Particles made up of four quarks are already exotic, and the one we have just discovered is the first to be made up of four heavy quarks of the same type, specifically two charm quarks and two charm antiquarks,” explains Giovanni Passaleva, who is just stepping down as spokesperson for LHCb. “Up until now, the LHCb and other experiments had only observed tetraquarks with two heavy quarks at most and none with more than two quarks of the same type.”

The new tetraquark is dubbed X(6900), with the number referring to its mass of 6900 MeV/c2 (6.9 GeV/c2). The X denotes the fact that LHCb physicists are not yet certain about key properties of the particle including its spin, parity and quark content.

Jul 2, 2020

Rimac C_Three Rendering Is a Four-Seat 1,900 HP Electric Hypercar

Posted by in categories: sustainability, transportation

:3333


Rimac Automobili went very quickly from a company that built subassemblies for others to one that produces some of the quickest, most desirable electric hypercars on the market. The man behind it all is Mate Rimac, a 32-year-old Croatian with a passion for electricity and innovation and, we presume, never-take-no-for-an-answer kind of attitude.

16 photos.

Continue reading “Rimac C_Three Rendering Is a Four-Seat 1,900 HP Electric Hypercar” »

Jul 2, 2020

Photonic paper: Multiscale assembly of reflective cellulose sheets in Lunaria annua

Posted by in category: nanotechnology

Bright, iridescent colors observed in nature are often caused by light interference within nanoscale periodic lattices, inspiring numerous strategies for coloration devoid of inorganic pigments. Here, we describe and characterize the septum of the Lunaria annua plant that generates large (multicentimeter), freestanding iridescent sheets, with distinctive silvery-white reflective appearance. This originates from the thin-film assembly of cellulose fibers in the cells of the septum that induce thin-film interference–like colors at the microscale, thus accounting for the structure’s overall silvery-white reflectance at the macroscale. These cells further assemble into two thin layers, resulting in a mechanically robust, iridescent septum, which is also significantly light due to its high air porosity (70%) arising from the cells’ hollow-core structure. This combination of hierarchical structure comprising mechanical and optical function can inspire technological classes of devices and interfaces based on robust, light, and spectrally responsive natural substrates.

Structural color has captured the fascination of optical researchers through numerous observations throughout history, both in naturally occurring structures and in the animal world (1–3). Plants have also evolved structural colors to fulfill a variety of functions (4–7): Structurally colored leaves (8–10), flowers (11, 12), and fruits (4, 5, 13, 14) are used by plants to regulate light harvesting (8, 15–17) and attract pollinators (6, 7), while they are also believed to promote seed dispersal (4, 5). The few, so far, described plants whose fruits are structurally colored are understory species living in tropical regions, whose fruits reflect light spanning from deep metallic blue to green when ripe.

Jul 2, 2020

Time to Take an Epic Flight Over This Frozen Martian Crater

Posted by in category: space

Korolev crater on Mars—the largest ice skating rink in the solar system, basically—has never looked more enthralling than it does in this impressive new visualization.

Jul 2, 2020

Boeing Just Powered Up NASA’s Most Powerful Rocket Ever

Posted by in category: space

The SLS is finally starting take shape.

Jul 2, 2020

Hollywood Is Banking That a Robot Named Erica Can Be the Next Movie Star

Posted by in categories: entertainment, finance, robotics/AI

She can’t get sick or be late to the set, and her hair and makeup needs are minimal: Her name is Erica, and Hollywood is hoping that a sophisticated robot can be its next big star. The synthetic actor has been cast in “b,” a $70 million science-fiction movie which producer Sam Khoze describes as “a James Bond meets Mission Impossible story with heart.”

Scribe Tarek Zohdy (“1st Born”), says, the story is about scientists who create an AI robot named Erica who quickly realize the danger of this top-secret program that is trying to perfect a human through a non-human form.

Variety caught up with the filmmakers Zohdy and Khoze to discuss “b” the $70 million film that plans to finish shooting next year, after a director and human star have been brought on.

Jul 2, 2020

Researchers observe branched flow of light for the first time

Posted by in categories: engineering, nanotechnology, physics

A team of researchers from the Technion – Israel Institute of Technology has observed branched flow of light for the very first time. The findings are published in Nature and are featured on the cover of the July 2, 2020 issue.

The study was carried out by Ph.D. student Anatoly (Tolik) Patsyk, in collaboration with Miguel A. Bandres, who was a postdoctoral fellow at Technion when the project started and is now an Assistant Professor at CREOL, College of Optics and Photonics, University of Central Florida. The research was led by Technion President Professor Uri Sivan and Distinguished Professor Mordechai (Moti) Segev of the Technion’s Physics and Electrical Engineering Faculties, the Solid State Institute, and the Russell Berrie Nanotechnology Institute.

Continue reading “Researchers observe branched flow of light for the first time” »

Jul 2, 2020

The dry ice-cooled electric motorcycle heading for the land speed world record

Posted by in categories: sustainability, transportation

Originally intended to make the record attempt this month, plans for the (hopefully) record-breaking run have now been delayed until next year. There seems to be a lot of electric vehicle world record attempts being delayed lately.

But that’s no matter to the Voxan team, including six-time motorcycle racing world champion Max Biaggi, who plans to ride into the record books on the Salar de Uyuni salt flat in Bolivia in July 2021.

The delay may have prevented the team from making their record run this month, but it hasn’t stopped them from unveiling the impressive bike today.

Jul 2, 2020

F-15EX Fighters To Get General Electric Engines Under Urgent Purchase

Posted by in category: futurism

The service still plans to hold an open competition to formally decide on what engine will power the bulk of the jets.