Toggle light / dark theme

A team of German physicists managed to pack up light — and unpack it 1.2 millimeters away, without altering it in the process.

It’s a simple concept, but extremely difficult to actually pull off. To do it, the team from the Johannes Gutenberg University Mainz (JGU) had to cool down rubidium-87 atoms to almost absolute zero.

“We stored the light by putting it in a suitcase so to speak, only that in our case the suitcase was made of a cloud of cold atoms,” Patrick Windpassinger, professor at JGU, research lead, said in a statement. “We moved this suitcase over a short distance and then took the light out again.”

We should save their DNA and resurrect them or keep in a bubble environment.


Close To Home

The researchers behind the study warned that each time an animal goes extinct, it also threatens humanity’s continued survival.

“The current extinction crisis is one of the more urgent global environmental problems and the only one [that is] truly irreversible,” study author Gerardo Ceballos of the National Autonomous University of Mexico’s Institute of Ecology told Earther. “Once a species is gone, there is no way to bring it back. Our paper indicates that is vastly speeding up.”

“Our goal was to integrate interactive functionalities directly into the fibers of textiles instead of just attaching electronic components to them,” says Jürgen Steimle, computer science professor at Saarland University. In his research group on human-computer interaction at Saarland Informatics Campus, he and his colleagues are investigating how computers and their operation can be integrated as seamlessly as possible into the physical world. This includes the use of electro-interactive materials.

Previous approaches to the production of these textiles are complicated and influence the haptics of the material. The new method makes it possible to convert textiles and garments into e-textiles, without affecting their original properties—they remain thin, stretchable and supple. This creates new options for quick and versatile experimentation with new forms of e-textiles and their integration into IT devices.

“Especially for devices worn on the body, it is important that they restrict movement as little as possible and at the same time can process high-resolution input signals”, explains Paul Strohmeier, one of the initiators of the project and a scientist in Steimle’s research group. To achieve this, the Saarbrücken researchers are using the in-situ polymerization process. Here, the are “dyed” into the fabric: a textile is subjected to a chemical reaction in a water bath, known as polymerization, which makes it electrically conductive and sensitive to pressure and stretching, giving it so-called piezoresistive properties. By “dyeing” only certain areas of a or polymerizing individual threads, the computer scientists can produce customized e-textiles.

Artificial intelligence has arrived in our everyday lives—from search engines to self-driving cars. This has to do with the enormous computing power that has become available in recent years. But new results from AI research now show that simpler, smaller neural networks can be used to solve certain tasks even better, more efficiently, and more reliably than ever before.

An international research team from TU Wien (Vienna), IST Austria and MIT (USA) has developed a new system based on the brains of tiny animals, such as threadworms. This novel AI-system can control a vehicle with just a few artificial neurons. The team says that system has decisive advantages over previous models: It copes much better with noisy input, and, because of its simplicity, its mode of operation can be explained in detail. It does not have to be regarded as a complex “black box”, but it can be understood by humans. This new deep learning model has now been published in the journal Nature Machine Intelligence.

Humans are innately able to adapt their behavior and actions according to the movements of other humans in their surroundings. For instance, human drivers may suddenly stop, slow down, steer or start their car based on the actions of other drivers, pedestrians or cyclists, as they have a sense of which maneuvers are risky in specific scenarios.

However, developing robots and autonomous vehicles that can similarly predict movements and assess the risk of performing different actions in a given scenario has so far proved highly challenging. This has resulted in a number of accidents, including the tragic death of a pedestrian who was struck by a self-driving Uber vehicle in March 2018.

Researchers at Stanford University and Toyota Research Institute (TRI) have recently developed a framework that could prevent these accidents in the future, increasing the safety of autonomous vehicles and other robotic systems operating in crowded environments. This framework, presented in a paper pre-published on arXiv, combines two tools, a and a technique to achieve risk-sensitive control.

Researchers have developed a new approach to printed electronics which allows ultra-low power electronic devices that could recharge from ambient light or radiofrequency noise. The approach paves the way for low-cost printed electronics that could be seamlessly embedded in everyday objects and environments.

Electronics that consume tiny amounts of power are key for the development of the Internet of Things, in which everyday objects are connected to the internet. Many , from wearables to healthcare devices to smart homes and smart cities, need cost-effective transistors and that can function with minimal energy use.

Printed electronics are a simple and inexpensive way to manufacture electronics that could pave the way for low-cost on unconventional substrates—such as clothes, plastic wrap or paper—and provide everyday objects with ‘intelligence’.

Modifications to chromosomes in “engram” neurons control the encoding and retrieval of memories.

When the brain forms a memory of a new experience, neurons called engram cells encode the details of the memory and are later reactivated whenever we recall it. A new MIT study reveals that this process is controlled by large-scale remodeling of cells’ chromatin.

This remodeling, which allows specific genes involved in storing memories to become more active, takes place in multiple stages spread out over several days. Changes to the density and arrangement of chromatin, a highly compressed structure consisting of DNA and proteins called histones, can control how active specific genes are within a given cell.

Analysis revealed that variants in the HMGCR gene region, which represent proxies for statin treatment, were associated with overall cancer risk, suggesting that statins could lower overall cancer risk.


Cholesterol-lowering drugs called statins may reduce cancer risk in humans through a pathway unrelated to cholesterol, says a study published today in eLife.

Statins reduce levels of LDL-cholesterol, the so-called ‘bad’ cholesterol, by inhibiting an enzyme called HMG-CoA-reductase (HMGCR). Clinical trials have previously demonstrated convincing evidence that statins reduce the risk of heart attacks and other cardiovascular diseases. But evidence for the potential effect of statins to reduce the risk of is less clear.

“Previous laboratory studies have suggested that lipids including cholesterol play a role in the development of cancer, and that statins inhibit cancer development,” explains lead author Paul Carter, Cardiology Academic Clinical Fellow at the Department of Health and Primary Care, University of Cambridge, UK. “However, no trials have been designed to assess the role of statins for in clinical practice. We decided to assess the potential effect of therapy on cancer risk using evidence from human genetics.”