Toggle light / dark theme

More than half of the world’s population carries the bacterium Helicobacter pylori in their stomach mucosa. It often causes no problems throughout life, but sometimes it can cause inflammation, and in some cases, it can even lead to the development of stomach cancer.

Helicobacter pylori uses several ‘virulence’ factors that allow it to survive in the stomach and can lead to the development of disease. In this issue of the journal Molecular Cell, Professor Cynthia Sharma’s research team report that multiple of these factors are centrally regulated by a small RNA molecule called NikS. Prof. Sharma heads the Chair for Molecular Infection Biology II at Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany.

Among the regulated by NikS are the two most important of Helicobacter pylori as well as two encoding outer membrane proteins. In particular, the JMU researchers were able to show that NikS regulates the CagA protein, a bacterial oncoprotein that plays a central role in the development of cancer instigated by Helicobacter pylori. In addition, a protein with a so far unknown function that is released into the environment by H. pylori is also under the control of NikS.

The Tesla Model 3 “refresh” has gone live on the electric car maker’s online configurator, and it comes with several compelling updates. As could be seen in the all-electric sedan’s order page, the Model 3 now comes with better range, better performance, new wheels, new features like a powered trunk, and more.

A look at the Model 3’s updated online configurator shows that the Standard Range variant, which used to have 250 miles of range, now has 263 miles of range per charge. The Model 3 Long Range Dual Motor AWD stands at the top range-wise with a whopping EPA rating of 353 miles per charge, far above the 322 miles that it previously offered. Even the Model 3 Performance, which is not optimized for maximum efficiency, now comes with 315 miles per charge, an improvement over its previous 299-mile EPA rating.

UK firm Reaction Engines hopes to revolutionize space access with a new class of propulsion system for reusable vehicles, as Oliver Nailard explains.


Reusable vehicles are vital to make access to space more affordable, but conventional rocket engines have their limits. Oliver Nailard describes how UK firm Reaction Engines hopes to revolutionize space access with a new class of propulsion system, the Synergetic Air Breathing Rocket Engine (SABRE)

If you do not yet have an account, please register so you can.

This fall sky show has some really bright meteors this year.


Two full moons with a meteor shower sandwiched in between? October has been a fun month for sky watchers.

The annual Orionid meteor shower is already heating up. It generally lasts from early October through about Nov. 7. This year, it’s expected to reach its peak before dawn on Oct. 21.

But don’t wait until then to start watching for meteors streaking across the sky.

Summary: Researchers have identified a signaling pathway in the hippocampus that plays a critical role in creates novel memories about new environments.

Source: IST Austria

Imagine going to a café you have never been to. You will remember this new environment, but when you visit it again and again fewer new memories about the environment will be formed, only the things that changed will be really memorable. How this long-term memory are regulated is still not fully understood. Ryuichi Shigemoto from the Institute of Science and Technology Austria (IST Austria) in cooperation with researchers from Aarhus University and the National Institute for Physiological Sciences in Japan now have uncovered a new keystone in the formation of memories.

Of all the many eVTOL personal flight machines we’ve seen lately, this one’s caused the most discussion in the now-virtual New Atlas office. The work of a young Canadian company, the Atlas is a 4-rotor manned multicopter design, in which all four of its ducted rotors are inline along a single wing.

My first thought upon seeing it was “why?” Every other design places props on at least four corners, indeed sometimes even more spread out in designs like the Volocopter. That ensures it’s easy to maintain stability in a hover against shifting winds, with the instant torque of the electric motors driving the props able to respond and re-balance the aircraft in fractions of a second.

On second look, though, the Watfly design might have more to it than meets the eye. It’s based upon a less common drone design – the tailsitter – which could confer its own advantages. Tailsitters give you the efficiency advantages of winged flight — and some of the same control surfaces – without a lot of the complexities of many tilt-rotor designs. The whole aircraft tilts once you’re up to speed, and you fly on the wing for the majority of your journey.

IS THE METAMATERIAL FISHEYE LENS AN ANSWER FOR RETINAL PROJECTION? There is a race to figure out the best way to project images onto the human retina, for augmented reality devices. Since the human retina is curved, unlike a photographic plate, a wide-angled, curved image designed to fit with the inherent curvature of the retina is in order. Planetariums can use fisheye lenses to project onto a curved dome in a similar way. Can modification of the new method for creating flat, wide angled fisheye metalenses be used for this purpose? There would be three immediate applications of such a capability: 1) Augmented reality projection which is not limited to a narrow portion of the visual field. 2) Full immersion virtual reality devices. 3) Night vision glasses that take large areas of aperture and project wide-angled images through a smaller exit pupil than the human pupil. It is possible that such a lens would be used in combination with another complementing metalens to allow the proper projection.


To capture panoramic views in a single shot, photographers typically use fisheye lenses — ultra-wide-angle lenses made from multiple pieces of curved glass, which distort incoming light to produce wide, bubble-like images. Their spherical, multipiece design makes fisheye lenses inherently bulky and often costly to produce.

Now engineers at MIT and the University of Massachusetts at Lowell have designed a wide-angle lens that is completely flat. It is the first flat fisheye lens to produce crisp, 180-degree panoramic images. The design is a type of “metalens,” a wafer-thin material patterned with microscopic features that work together to manipulate light in a specific way.

In this case, the new fisheye lens consists of a single flat, millimeter-thin piece of glass covered on one side with tiny structures that precisely scatter incoming light to produce panoramic images, just as a conventional curved, multielement fisheye lens assembly would. The lens works in the infrared part of the spectrum, but the researchers say it could be modified to capture images using visible light as well.

It looks like the Tabacco plant is being used for the Covid19 vaccine.


Historically, tobacco plants are responsible for their share of illness and death. Now they may help control the COVID-19 pandemic.

Two biotech companies are using the tobacco plant, Nicotiana benthamiana, as bio-factories to produce a key protein from the coronavirus that can be used in a vaccine.

“There’s obvious irony there,” says James Figlar, executive vice president for research and development for R.J. Reynolds Tobacco. Reynolds owns Kentucky BioProcessing, one of the companies working on a COVID-19 vaccine from plants.