Menu

Blog

Page 7345

Jul 3, 2020

Stunning NASA time-lapse video shows 10 years in life of sun

Posted by in categories: computing, space

NASA has released a stunning 61-minute time-lapse video that shows a decade in the life of the sun.

The video was created from images taken by NASA’s Solar Dynamics Observatory.

Continue reading “Stunning NASA time-lapse video shows 10 years in life of sun” »

Jul 3, 2020

The lightest electromagnetic shielding material in the world

Posted by in categories: chemistry, materials

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic components or the transmission of signals. High-frequency electromagnetic fields can only be shielded with conductive shells that are closed on all sides. Often thin metal sheets or metallized foils are used for this purpose. However, for many applications such a shield is too heavy or too poorly adaptable to the given geometry. The ideal solution would be a light, flexible and durable material with extremely high shielding effectiveness.

Aerogels against electromagnetic radiation

A breakthrough in this area has now been achieved by a research team led by Zhihui Zeng and Gustav Nyström. The researchers are using nanofibers of as the basis for an aerogel, which is a light, highly porous material. Cellulose fibers are obtained from wood and, due to their , enable a wide range of chemical modifications. They are therefore a highly popular research object. The crucial factor in the processing and modification of these cellulose nanofibres is to be able to produce certain microstructures in a defined way and to interpret the effects achieved. These relationships between structure and properties are the very field of research of Nyström’s team at Empa.

Jul 3, 2020

A three-dimensional phase diagram of heavy-fermion compound with competing quantum phases

Posted by in categories: particle physics, quantum physics

URu2Si2 is a metal that belongs to the family of heavy-fermion compounds in which several quantum phases (e.g., magnetism and superconductivity) can compete or coexist. These metals exhibit small energy scales that are easy to tune, a characteristic that makes them ideal for testing new physical ideas and concepts.

For instance, researchers have often used these compounds to test theories related to , quantum criticality and unconventional superconductivity. Studying heavy-fermion metals could ultimately unveil new physical properties of other correlated-electron materials that have shown promise for a wide range of applications, such as .

A research team at the National Laboratory of High Magnetic Fields (LNCMI/CNRS) in France and Université Grenoble Alpes, in collaboration with researchers at Okayama University and Tohoku University in Japan, recently carried out a systematic investigation of URu2Si2 under a combination of high pressures and high magnetic fields. Their paper, published in Nature Physics, maps out a phase in the material that is so far poorly understood, delineating a complex three-dimensional phase diagram.

Jul 3, 2020

Surrounded by trees and with 1,200 solar panels, this Norwegian building could change how we think about factories

Posted by in categories: solar power, sustainability

The buildings that produce the goods we use every single day are changing.

Jul 3, 2020

MMR Vaccine Appears to Confer Strong Protection from COVID-19: Few Deaths from SARS-CoV-2 in Highly Vaccinated Populations

Posted by in category: biotech/medical

This looks quite interesting: MMR vaccines might be beneficial against #Covid19


PDF | Published epidemiological data suggests a correlation between patients who receive measles-rubella containing vaccines such as the commonly… | Find, read and cite all the research you need on ResearchGate.

Jul 3, 2020

Just 50% of Americans plan to get a COVID-19 vaccine. Here’s how to win over the rest

Posted by in categories: biotech/medical, health

Even before the pandemic, public health agencies around the world were struggling to counter increasingly sophisticated efforts to turn people against vaccines. With vaccination rates against measles and other infectious diseases falling in some locations, the World Health Organization (WHO) in 2019 listed “vaccine hesitancy” as one of 10 major global health threats.


To stop the pandemic, the world’s public health experts must win the coming “story war” over vaccine misinformation.

Jul 3, 2020

Fly Through a Nebula 163,000 Light Years Away (Celebrating 30 Years of the Hubble Space Telescope)

Posted by in category: space

The Hubble Space Telescope has been enhancing our understanding of the universe through breathtaking images for 30 years — PBS Digital Studios celebrates Hubble’s 30th anniversary.

Jul 3, 2020

‘Hunter drone’ that flies at night could be used to find gemstone deposits

Posted by in categories: drones, robotics/AI

An autonomous ‘hunter drone’ finds fluorescent targets including minerals and gemstones.

Jul 3, 2020

Hydroxychloroquine lowers COVID-19 death rate, Henry Ford Health study finds

Posted by in categories: biotech/medical, health

Well this is interesting:

A Henry Ford Health System study shows the controversial anti-malaria drug hydroxychloroquine helps lower the death rate of COVID-19 patients, the Detroit-based health system said Thursday.

Officials with the Michigan health system said the study found the drug “significantly” decreased the death rate of patients involved in the analysis.

The study analyzed 2,541 patients hospitalized among the system’s six hospitals between March 10 and May 2 and found 13% of those treated with hydroxychloroquine died while 26% of those who did not receive the drug died.

Continue reading “Hydroxychloroquine lowers COVID-19 death rate, Henry Ford Health study finds” »

Jul 2, 2020

Fastest Laser Blast — 67 Quintillionths of a Second

Posted by in categories: chemistry, particle physics, quantum physics

face_with_colon_three Circa 2012


Scientists have been able to generate the world’s fastest laser pulse with a beam shot for 67 attoseconds (0.000000000000000067 seconds). This breaks the previous record of 80 attoseconds that was established in 2008. This could help engineers see extremely rapid quantum mechanical processes, like the movements of electrons during chemical reactions.

The researchers published their findings in the journal Optics Letters. This will allow the study of electron motions with attosecond pulses. The blast was obtained by sending pulses from a titanium-sapphire near-infrared laser through a system known as double optical gating (DOG) in which the gate concentrates the energy of extreme ultraviolet light pulses and focuses them on a cell filled with neon gas.