Toggle light / dark theme

Black holes are perhaps the most mysterious objects in nature. They warp space and time in extreme ways and contain a mathematical impossibility, a singularity – an infinitely hot and dense object within. But if black holes exist and are truly black, how exactly would we ever be able to make an observation?

This morning the Nobel Committee announced that the 2020 Nobel Prize in physics will be awarded to three scientists – Sir Roger Penrose, Reinhard Genzel and Andrea Ghez – who helped discover the answers to such profound questions. Andrea Ghez is only the fourth woman to win the Nobel Prize in physics.

Robert Penrose is a theoretical physicist who works on black holes, and his work has influenced not just me but my entire generation through his series of popular books that are loaded with his exquisite hand-drawn illustrations of deep physical concepts.

Head Image Caption: Street level view of 3D-reconstructed Chelsea, Manhattan

Historians and nostalgic residents alike take an interest in how cities were constructed and how they developed — and now there’s a tool for that. Google AI recently launched the open-source browser-based toolset “,” which was created to enable the exploration of city transitions from 1800 to 2000 virtually in a three-dimensional view.

Google AI says the name is pronounced as “re-turn” and derives its meaning from “reconstruction, research, recreation and remembering.” This scalable system runs on Google Cloud and Kubernetes and reconstructs cities from historical maps and photos.

Imagine a mobile phone charger that doesn’t need a wireless or mains power source. Or a pacemaker with inbuilt organic energy sources within the human body.

Australian researchers led by Flinders University are picking up the challenge of “scavenging” invisible power from low-frequency vibrations in the surrounding environment, including wind, air or even contact-separation energy (static electricity).

“These so-called triboelectric nanogenerators (or TENGs) can be made at low cost in different configurations, making them suitable for driving such as personal electronics (mobile phones), biomechanics devices (pacemakers), sensors (temperature/pressure/chemical sensors), and more,” says Professor Youhong Tang, from Flinders University’s College of Science and Engineering.

As the Ford Bronco and Jeep Wrangler battle over traditional off-road supremacy next year, General Motors has its sights set on a new segment with a different competitor: Tesla.

The Detroit automaker resurrects the Hummer on Tuesday night as an all-electric “supertruck” that’s set to go on sale in roughly a year – likely ahead of Tesla’s Cybertruck. It will be GM’s first real test as a competitor against Tesla. It also will be the first vehicle with the company’s next-generation EV platform and batteries, known as Ultium.

GM had the time and resources to bring back Hummer with an internal combustion engine to directly compete against the upcoming Bronco and Wrangler, but decided against it.