Toggle light / dark theme

When we apprehend reality as the entirety of everything that exists including all dimensionality, all events and entities in their respective timelines, then by definition nothing exists outside of reality, not even “nothing.” It means that the first cause for reality’s existence must lie within ontological reality itself, since there is nothing outside of it. This self-causation of reality is perhaps best understood in relation to the existence of your own mind. Self-simulated reality transpires as self-evident when you relate to the notion that a phenomenal mind, which is a web of patterns, conceives a certain novel pattern and simultaneously perceives it. Furthermore, the imminent natural God of Spinoza, or Absolute Consciousness, becomes intelligible by applying a scientific tool of extrapolation to the meta-systemic phenomenon of radical emergence and treating consciousness as a primary ontological mover, the Source if you will, not a by-product of material interactions.

#OntologicalHolism #ontology #holism #cosmology #phenomenology #consciousness #mind #evolution

Circa 2013


A group of scientists from Kyoto has managed to successfully analyze and “record” the basic elements of what people see when they dream. The idea of recording dreams has been a mainstay in science fiction, but also a frequent goal for researchers. As Smithsonian Magazine writes, this group designed its study based on the premise that brains react to “seeing” objects with repeatable patterns that can be measured with MRI. If a machine can recognize the patterns well enough, it can reverse-engineer them, giving us a window into what’s going on inside people’s heads while they dream.

Three participants were selected for a study and asked to sleep for several three-hour blocks in an MRI scanner. Once they fell asleep, scientists woke them up and asked them to describe what they’d seen in the dream, grouping them into loose categories and sub-categories like “car,” “male,” “female,” or “dwelling.” The group then picked representations of those categories from an online image search and showed them to the participants, once again measuring their brain activity to figure out what patterns might be unique to that concept. Finally, the participants were asked to sleep again, but this time, a machine wouldn’t simply record how their brain responded to dreaming — it would attempt to match it to one of the categories with a series of images, as seen in the video below.

When matching the contents of the video to the categories the sleeper actually recounted when asked about a dream, the machine turned out to be right roughly 60 percent of the time, or better than it could have done by random chance. The system was unsurprisingly better at detecting general meta-categories, like whether someone was looking at a person or a scene, than it was at sensing more specific objects.

So the Universe is getting hotter? 😃


For almost a century, astronomers have understood that the Universe is in a state of expansion. Since the 1990s, they have come to understand that as of 4 billion years ago, the rate of expansion has been speeding up.

As this progresses, and the galaxy clusters and filaments of the Universe move farther apart, scientists theorize that the mean temperature of the Universe will gradually decline.

But according to new research led by the Center for Cosmology and AstroParticle Physics (CCAPP) at Ohio State University, it appears that the Universe is actually getting hotter as time goes on.

Scanning lasers—from barcode scanners at the supermarket to cameras on newer smartphones—are an indispensable part of our daily lives, relying on lasers and detectors for pinpoint precision.

Distance and using LiDAR—a portmanteau of light and radar—is becoming increasingly common: reflected beams record the surrounding environment, providing crucial data for autonomous cars, agricultural machines, and factory robots.

Current technology bounces the laser beams off of moving mirrors, a mechanical method that results in slower scanning speeds and inaccuracies, not to mention the large physical size and complexity of devices housing a laser and mirrors.