Menu

Blog

Page 7307

Sep 5, 2020

How Far We Can Wind Back The Clock Ft. David Sinclair | Think Inc.

Posted by in categories: biotech/medical, life extension

This is a part of a longer interview which you can watch in parts or listen in one go though it is posted on youtube as audio only for the latter.


Let’s say we find a way to reverse aging. How far could we wind things back and when should we do it?

Continue reading “How Far We Can Wind Back The Clock Ft. David Sinclair | Think Inc.” »

Sep 5, 2020

Pancreas on a chip

Posted by in category: biotech/medical

HSCI scientists have combined organ-on-a-chip and stem-cell technologies to make a powerful tool for diabetes research and beta-cell transplantation.

Sep 5, 2020

What Happens When a White Hole and a Black Hole Collide?

Posted by in category: cosmology

What Happens When a White Hole and a Black Hole Collide? 🕳️😀👌.

Sep 5, 2020

Low-temperature plasma device may lead to more efficient engines

Posted by in categories: biotech/medical, food, nanotechnology

Low-temperature plasmas offer promise for applications in medicine, water purification, agriculture, pollutant removal, nanomaterial synthesis and more. Yet making these plasmas by conventional methods takes several thousand volts of electricity, says David Go, an aerospace and mechanical engineer at the University of Notre Dame. That limits their use outside high-voltage power settings.

In work supported by the U.S. National Science Foundation, Go and a team of researchers conducted research that explores making plasma devices that can be operated without electrical power—they need only human or .

Their paper in Applied Physics Letters introduces a strategy the scientists call “energy-conversion plasma” as an alternative to producing “transient spark” discharges without the need for a very high-voltage power supply.

Sep 5, 2020

This Gene May Be Why Women with Alzheimer’s Disease Live Longer

Posted by in categories: biotech/medical, neuroscience, sex

Women with Alzheimer’s disease tend to live longer than men with the disease — and a new study suggests that a gene on the X chromosome may help explain why.

Each person typically has one pair of sex chromosomes in each cell of their body. People assigned female at birth typically have two X chromosomes, while people assigned male at birth typically have one X chromosome and one Y chromosome.

Researchers say a gene called KDM6A may explain why women with Alzheimer’s disease tend to live longer than men with the same condition.

Sep 5, 2020

This know-it-all AI learns by reading the entire web nonstop

Posted by in category: robotics/AI

Back in July, OpenAI’s latest language model, GPT-3, dazzled with its ability to churn out paragraphs that look as if they could have been written by a human. People started showing off how GPT-3 could also autocomplete code or fill in blanks in spreadsheets.

In one example, Twitter employee Paul Katsen tweeted “the spreadsheet function to rule them all,” in which GPT-3 fills out columns by itself, pulling in data for US states: the population of Michigan is 10.3 million, Alaska became a state in 1906, and so on.

Except that GPT-3 can be a bit of a bullshitter. The population of Michigan has never been 10.3 million, and Alaska became a state in 1959.

Sep 5, 2020

Molecule’s electronic structure is simulated on a quantum computer

Posted by in categories: chemistry, computing, quantum physics

Simulating chemical processes is one of the most promising applications of quantum computers, but problems with noise have prevented nascent quantum systems from outperforming conventional computers on such tasks. Now, researchers at Google have taken a major step towards this goal by using the most powerful quantum computer yet built to successfully implement a protocol for calculating the electronic structure of a molecule. The results may form a blueprint for complex, useful calculations on quantum computers affected by noise.

In October 2019, Google announced to great fanfare that its 53-qubit Sycamore computer had achieved quantum advantage. This means that a quantum computer can solve at least one problem much faster than any conventional supercomputer. However, Google researchers openly acknowledged that the problem Sycamore solved (sampling the outcome of a random quantum circuit) is easy for a quantum computer but difficult for a conventional supercomputer — and had little practical use.

What researchers would really like to do is use quantum computers to solve useful problems more effectively than possible with conventional computers: “Sycamore is extremely programmable and, in principle, you really can run any algorithm on it…In this sense, it’s a universal quantum computer,” explains team member Ryan Babbush of Google Research, “However, there’s a heavy caveat: there’s still noise affecting the device and as a result we’re still limited in the size of circuit we can implement.” Such noise, which results from classical sources such as thermal interference, can destroy the fragile superpositions crucial to quantum computation: “We can implement a completely universal circuit before the noise catches up and eventually destroys the computation,” says Babbush.

Sep 5, 2020

Using CRISPR to improve viral vectors for gene therapy

Posted by in category: biotech/medical

To overcome preexisting immunity that cripples the adenovirus vectors used in gene therapy and vaccines, scientists at the University of Pittsburgh created a CRISPR-based system that briefly suppresses the genes that cause the problem. The method improved gene therapy uptake in mice and is being developed by startup SafeGen.

Sep 5, 2020

Scientists Reconstruct Body Dimensions of Megalodon

Posted by in category: futurism

A 16-m- (52.5-foot) long megalodon had a head 4.65 m (15.3 feet) long, a dorsal fin 1.62 m (5.3 feet) tall and a tail 3.85 m (9.4 feet) high, according to a study led by researchers from the University of Bristol and Swansea University.

Sep 5, 2020

Depression Has Skyrocketed During the COVID-19 Pandemic, Study Says

Posted by in categories: biotech/medical, neuroscience

The lockdown “cure” for COVID may have caused more damage than the disease…