Toggle light / dark theme

Circa 2009.


A 270-kilometre optical fiber has been transformed into the world’s longest laser, a feat its inventors believe will lead to a radical new outlook on information transmission and secure communications.

Engineering academics at Aston University, UK, are leading research into ultralong fiber lasers, to create a platform capable of delivering ‘next generation’ information transmission, including telecommunications and broadband.

When normal telephone conversations or data sent over the internet are converted to light in order to travel through standard optical fibers the signals lose around 5 per cent of their power for every kilometre that they travel. The signals then have to be amplified to ensure that they reach their destination, a process which creates background noise and affects the signals quality.

The McDonald Laser Ranging Station, near Fort Davis, Texas, USA, uses a laser to measure the distance between the Earth and the Moon to an accuracy of 1 cm (0.39 inches). It bounces a laser off reflective targets left on the lunar surface by three US Apollo missions and two Soviet Lunokhod missions. The distance between the centres of the Earth and the Moon is 385,000 km (239,000 miles), and the laser ranging has shown that the Moon is receding from the Earth at a rate of 3.8 cm (1.5 inches) per year. This is one of the most accurate distance measurements ever made.

But there’s some bad news: Proxima Centauri tends to bombard any planets in its vicinity with a ferocious amount of X rays — Proxima b receives about 400 times the amount as Earth receives from its Sun.

That leads to the question: “Is there an atmosphere that protects the planet from these deadly rays?” asked co-author Christophe Lovis, a researcher who worked on ESPRESSO, in the statement. Lovis hopes that the next generation of spectrographs — ESPRESSO’s successor, “RISTRETTO,” is already in the works — could help us find the answer.

For us to get a closer look at Proxima b however, Proxima Centauri is “only” 4.2 light-years from the Sun — meaning it would still take several thousand years to get there using today’s propulsion technology.

This is one of four blogs in a series examining current challenges and opportunities for recycling of clean energy technologies. Please see the introductory post, as well as other entries on solar panels and wind turbines.


us department of energy[ caption] courtesy union concerned scientists. by james gignac, lead midwest energy analyst this is one four blogs in a series examining current challenges and opportunities for recycling clean technologies. please see the introductory post, as well other entries on solar panels and wind turbines. special thanks to jessica garcia, ucs’s=

The Sterile Insect Technique (SIT) is based on the mass release of sterilized male insects to reduce the pest population size via infertile mating. Critical for all SIT programs is a conditional sexing strain to enable the cost-effective production of male-only populations. Compared to current female-elimination strategies based on killing or sex sorting, generating male-only offspring via sex conversion would be economically beneficial by doubling the male output. Temperature-sensitive mutations known from the D. melanogaster transformer-2 gene (tra2ts) induce sex conversion at restrictive temperatures, while regular breeding of mutant strains is possible at permissive temperatures. Since tra2 is a conserved sex determination gene in many Diptera, including the major agricultural pest Ceratitis capitata, it is a promising candidate for the creation of a conditional sex conversion strategy in this Tephritid. Here, CRISPR/Cas9 homology-directed repair was used to induce the D. melanogaster-specific tra2ts SNPs in Cctra2. 100% female to male conversion was successfully achieved in flies homozygous for the tra2ts2 mutation. However, it was not possible, to identify a permissive temperature for the mutation allowing the rearing of a tra2ts2 homozygous line, as lowering the temperature below 18.5 °C interferes with regular breeding of the flies.

Circa 2019


New research conducted at OHSU in Portland, Oregon, identifies a gene that could provide a new target for developing medication to prevent and treat alcoholism.

Scientists at the Oregon National Primate Research Center at OHSU discovered a gene that had lower expression in the brains of nonhuman primates that voluntarily consumed heavy amounts of alcohol compared with those that drank less.

Furthermore, the research team unraveled a link between alcohol and how it modulates the levels of activity of this particular gene. Researchers discovered that when they increased the levels of the gene encoded protein in mice, they reduced alcohol consumption by almost 50 percent without affecting the total amount of fluid consumed or their overall well-being.

Battery Council International (BCI), Chicago, and Essential Energy Everyday have released a study showing lead batteries have a recycling rate of 99.3 percent, making them the No. 1 recycled consumer product in the U.S.

The groups say the near-perfect rate of recycling is attributed to industry investment in a closed loop collection and recycling system that keeps 1.7 million tons of batteries out of landfills annually.

The National Recycling Rate Study, released in conjunction with America Recycles Day Nov. 15, 2017, demonstrates the sustainability of lead batteries and their role in environmentally friendly energy storage for automotive and industrial applications, say the organizations.