Toggle light / dark theme

When atoms get extremely close, they develop intriguing interactions that could be harnessed to create new generations of computing and other technologies. These interactions in the realm of quantum physics have proven difficult to study experimentally due the basic limitations of optical microscopes.

Now a team of Princeton researchers, led by Jeff Thompson, an assistant professor of electrical engineering, has developed a new way to control and measure that are so close together no optical lens can distinguish them.

Described in an article published Oct. 30 in the journal Science, their method excites closely-spaced erbium atoms in a crystal using a finely tuned laser in a nanometer-scale optical circuit. The researchers take advantage of the fact that each atom responds to slightly different frequencies, or colors, of , allowing the researchers to resolve and control multiple atoms, without relying on their .

ICL’s salt ponds constitute the southern part of the Dead Sea. Many hotels and tourist attractions were built on these ponds’ shores and utilize their production of salt for the local tourism industry. Specifically, one major pond — Pond 5 — “enables the … livelihoods of thousands of people [who are] dependent on [its] stable water level,” according to ICL.

In the spirit of Halloween:


Zombies are oftentimes a common trope in science fiction and horror. In this video, we will go over why and how they are plausible.

Discord Link: https://discord.gg/brYJDEr
Patreon link: https://www.patreon.com/TheFuturistTom
Please follow our instagram at: https://www.instagram.com/the_futurist_tom
For business inquires, please contact [email protected]

Mice who ate a diet high in fat and cholesterol were more likely to see their hair turn from black to white and experience hair loss. The diet also appeared to cause inflammation of the skin.

In the first stage of the study, the researchers genetically modified mice to develop atherosclerosis, a condition in which fat deposits form in the arteries.

They then fed mice either a Western diet high in fat and cholesterol or untreated rat chow from the age of 12 to 20 weeks. As expected, the mice who consumed the Western diet saw their hair turn white and fall out, and develop skin lesions. And the longer the mice ate the diet, the worse their symptoms became. By week 36, three quarters of the animals had skin lesions.

New research[1] presented at the 29th EADV Congress, EADV Virtual, shows that socks coated in zinc oxide nanoparticles (ZnO-NPs) can prevent bromodosis (foot odor) and pitted keratolysis (bacterial infection causing smelly feet), reducing the negative impact this embarrassing condition has on quality of life.[2]

Developed by the Royal Thai Airforce, the ZnO-NP-coated socks were trialed in a real-life setting by researchers at Siriraj Hospital, Mahidol University in Thailand. They found that the antibacterial efficacy of ZnO-NPs, along with its safety and compatibility with human skin, makes it the perfect compound to incorporate into textiles, including socks, to prevent unpleasant foot odor.

The double-blinded, randomized, controlled trial was conducted with 148 cadets at the Thai Naval Rating School. Bromodosis and pitted keratolysis are a common complaint in military personnel, with foot lesions, including pitted keratosis, occurring in over a third of naval cadets in Thailand (38.5%).[2]

There are nearly one million catalogued asteroids, but we don’t know much about many of them. Now Unistellar and its scientific partner, the SETI Institute, can count on a network of nearly 3,000 amateurs capable of observing thousands of asteroids and providing an estimate of their size and shape. With mobile stations located in Asia, North America and Europe, the Unistellar network, the largest network of citizen astronomers, participates in cutting-edge research and has delivered its first scientific results including the 3D shape model of an asteroid and the size of another one.

“The Unistellar eVscope is more than a telescope. It’s also a tool to access a network made of citizen astronomers throughout the world who can observe together and participate in scientific campaigns,” said Franck Marchis, senior planetary astronomer at the SETI Institute and Chief Scientific Officer at Unistellar. “Today more than 150 people have already contributed to our campaigns and collected valuable scientific data from their backyard.”

In addition to the SETI Institute, Marchis’ group collaborated with Josef Hanuš and Josef Ďurech of the Institute of Astronomy at Charles University to identify potential targets of interest in the asteroid population. “After having designed and validated our data analysis pipeline in 2020, we can now routinely propose campaigns to our citizen astronomers,” said Marchis.