Toggle light / dark theme

VTOL (vertical take-off and landing) drones are quite versatile, as they combine the vertical flight of a helicopter with the fast and efficient forward flight of a fixed-wing airplane. This one features an extended range, thanks to a fuel cell power system.

The experimental aircraft was developed by a team at the Netherlands’ Delft University of Technology (TU Delft), working with colleagues from the Royal Netherlands Navy and the Netherlands Coastguard. It has a 3-meter wingspan (9.8 ft), weighs 13 kg (29 lb), and features 12 motor/propeller units distributed on its two wings. Even if several of the motors fail, it can reportedly still fly and land successfully.

The drone is also a “tail-sitter”-type VTOL. This means that when taking off and landing, its body is angled upwards, allowing the propellers to work more like a helicopter’s rotor blades. For going into forward flight, the thrust is electronically redistributed between the 12 motors, causing the aircraft to level out into a horizontal orientation.

This may be good news for those who have damaged joints due to sports or old age.

😃


Human knees are notoriously vulnerable to injury or wearing out with age, often culminating in the need for surgery. Now researchers have created new hybrid bioinks that can be used to 3D print structures to replace damaged cartilage in the knee.

The meniscus is the rubbery cartilage that forms a C-shaped cushion in your knee, preventing the bones of your upper and lower leg from rubbing against each other. This stuff is susceptible to damage from sports injuries, but can also wear out with age – and if it gets particularly bad, sometimes the only thing left to do is surgically remove some of the damaged meniscus.

If there’s one major thing that’s holding back an electric revolution in the aviation world, it’s energy storage. But there are a ton of very clever people banging away at the problem of how to increase the energy density of batteries, and another growing faction working to make long-range, fast-fueling hydrogen-fuel-cell powertrains the standard for future flight.

Either way, it’s going to happen in the coming decades, and one new company out of Minneapolis is turning its attention to the other critical element of the propulsion system. H3X Technologies is bursting out of the gate with an integrated electric motor design it says can deliver the same sustained power as some of the best motors on the market at a third or less of the total weight.

Weight, of course, is a big deal in aviation – and that goes double for electric aircraft. Every pound carried skyward represents a pound less payload you can carry, a reduction in the range you’ll get from your battery or hydrogen tank, and ultimately a loss of money for the owner.

It’s a bit like a Bond villain lair, only much more dangerous.


An underground missile base lurking somewhere beneath Iran looks an awful lot like a James Bond villain lair, complete with walls carved out of rock, spotlights, and a promise of “severe revenge.”

Dive deeper. ➡ Read best-in-class military features and get unlimited access to the weird world of Pop Mech, starting NOW.

Interactive 3D images that appear to float in the air, above a table that a group of people can stand around without needing any special headsets or glasses: that’s what South Australian company Voxon Photonics has built with its US$10,000 VX1 table.

Fiction has promised us holograms for decades, with one of the most famous examples appearing in 1977’s Star Wars: A New Hope. On board the Millennium Falcon, R2D2 and Chewbacca play some sort of digital board game, interacting with figures built out of light hovering in the air above a table.

Such things have been a long time coming to the real world. VR and AR can both somewhat replicate the experience, but they require headsets. In the best case, these are a bit antisocial, stopping you from looking others in the eye. In the worst case, they completely remove the wearer from the real world to immerse them in virtual space.

(Inside Science) — Have you ever played with a pocket-sized laser, wondering how far its light would travel? Could you, a naughty student inside a classroom on Earth, annoy a poor substitute teacher on Mars by waggling your laser pointer at him?

“California curtailed between 150,000–300,000 MWh of excess renewable energy per month through the spring of 2020, yet saw its first rolling blackouts in August because the grid was short on energy,” says Paul Browning, CEO of Mitsubishi Power Americas (formerly known as MHPS). “Long-duration energy storage projects like ours that are designed to shift excess energy from periods of oversupply, like California in the spring, to periods of undersupply, like California in late summer, are critical to ensure similar events are avoided as we continue to make significant strides towards deep decarbonization.”

Storing fuel in salt caverns isn’t new, but hydrogen’s growing role in decarbonization has revitalized interest in the concept. The U.S. Strategic Petroleum Reserve has long stored emergency crude oil in underground salt caverns on the Gulf Coast, and notes they cost 10 times less than aboveground tanks and 20 times less than hard rock mines. The Reserve has 60 enormous caverns, typically 200 feet in diameter and 2,500 feet tall, and one “large enough for Chicago’s Willis Tower to fit inside with room to spare.”

Caverns can be created in salt domes by drilling into the salt dome and injecting the rock with water, which dissolves the salt. The resulting brine is extracted, leaving a large cavity. The next step is storing hydrogen in the cavern. Hydrogen electrolyzers can convert water into hydrogen by using renewable energy from solar and other sources. The hydrogen can then be stored, and reconverted to electricity when needed.

Burning iron as clean fuel.

Very interesting. I wonder if this method can become mainstream. 😃


Many industries use heat-intensive processes that generally require the burning of fossil fuels, but a surprising green fuel alternative is emerging in the form of metal powders. Ground very fine, cheap iron powder burns readily at high temperatures, releasing energy as it oxidizes in a process that emits no carbon and produces easily collectable rust, or iron oxide, as its only emission.

These guys are are able to grow patches of min-forest along roads and parks.

It’s a chance to get back to nature! 😃 I think it would be good to get in touch with nature after a hard day at work or after a long trip. 😃