Toggle light / dark theme

https://www.BetaGlucanShop.com — Natural killer cells (NK cells) are the most aggressive cells of your immune system and kills through apoptosis, also known as programmed cell death. These innate immune cells are key players against viral infections and cancer growth.

Natural killer cells help prevent metastasis by killing abnormal cells and tumour cells. Metastasis is the spread of cancer from one part of the body to another. Beta glucans are used in immunotherapy as they may help (depending on type) the immune system distinguish between healthy and abnormal cells like cancer cells, and thus direct the immune cells to engage cancer cells.

Research shows us that beta 1,3/1,6 glucans can trigger groups of immune cells including macrophages, neutrophils, monocytes, natural killer cells and dendritic cells for activity. Clinical human studies demonstrate that Wellmune Beta Glucan significantly increases the percent of active immune cells available to defend your body. Wellmune increases mobilization of innate immune cells to the site of a challenge, enabling faster recognition and neutralization of foreign intruders and killing (phagocytosis) of foreign challenges, resulting in a more complete immune response.

Studies on Wellmune Beta Glucan shows that this proprietary strain of patented yeast beta 1,3/1,6 glucan primes macrophages, neutrophils and natural killer cells to defend your body against a broad range of infections, other foreign challenges, and assist in the removal of damaged cells.

The annual meeting of the Radiological Society of North America highlighted how artificial intelligence is being used to augment medical imaging.


RSNA 2020, the annual meeting of the Radiological Society of North America, showcases the latest research advances and product developments in all areas of radiology. Here’s a selection of studies presented at this year’s all-virtual event, all of which demonstrate the increasingly prevalent role played by artificial intelligence (AI) techniques in diagnostic imaging applications.

Deep-learning model helps detect TB

Early diagnosis of tuberculosis (TB) is crucial to enable effective treatments, but this can prove challenging for resource-poor countries with a shortage of radiologists. To address this obstacle, Po-Chih Kuo, from Massachusetts Institute of Technology, and colleagues have developed a deep-learning-based TB detection model. The model, called TBShoNet, analyses photographs of chest X-rays taken by a phone camera.

Just a few doses of an experimental drug can reverse age-related declines in memory and mental flexibility in mice, according to a new study by UC San Francisco scientists. The drug, called ISRIB, has already been shown in laboratory studies to restore memory function months after traumatic brain injury (TBI), reverse cognitive impairments in Down Syndrome, prevent noise-related hearing loss, fight certain types of prostate cancer, and even enhance cognition in healthy animals.

In the new study, published December 1, 2020 in the open-access journal eLife, researchers showed rapid restoration of youthful cognitive abilities in aged mice, accompanied by a rejuvenation of brain and that could help explain improvements in brain function.

“ISRIB’s extremely rapid effects show for the first time that a significant component of age-related cognitive losses may be caused by a kind of reversible physiological “blockage” rather than more permanent degradation,” said Susanna Rosi, Ph.D., Lewis and Ruth Cozen Chair II and professor in the departments of Neurological Surgery and of Physical Therapy and Rehabilitation Science.

Turning off a newly identified enzyme could reverse a natural aging process in cells.

Research findings by a KAIST team provide insight into the complex mechanism of cellular senescence and present a potential therapeutic strategy for reducing age-related diseases associated with the accumulation of senescent cells.

Simulations that model molecular interactions have identified an enzyme that could be targeted to reverse a natural aging process called cellular senescence. The findings were validated with laboratory experiments on skin cells and skin equivalent tissues, and published in the Proceedings of the National Academy of Sciences (PNAS).