Toggle light / dark theme

Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012–2016 against specific cancer cell lines.

Marine fungi are important source of secondary metabolites useful for the drug discovery purposes. Even though marine fungi are less explored in comparison to their terrestrial counterparts, a number of useful hits have been obtained from the drug discovery perspective adding to their importance in the natural product discovery (Molinski et al., 2009; Butler et al., 2014), which have yielded a wide range of chemically diverse agents with antibacterial, antiviral and anticancer properties in animal systems. Starting with the celebrated example of cephalosporins, marine fungi have provided unique chemical skeletons that could be used to develop drugs of clinical importance (Bhadury et al., 2006; Saleem et al., 2007; Javed et al., 2011; Sithranga and Kathiresan, 2011). Fungi, in general, have been generous source of drugs as evidenced by the isolation of many drugs in use such as paclitaxel, camptothecin, vincristine, torreyanic acid and cytarabine to name a few.

Gonzalez thinks that Tesla taxis could help reinvigorate the city’s yellow-cab industry, which has taken a major hit from ride-hailing services like Uber, Via, and Lyft. He also predicts that the city could, for sustainability reasons, start mandating electric cabs, so he’s looking to get ahead of the curve, even if the commercial charging infrastructure isn’t quite there yet.

Read More: Tesla has released ‘full self-driving’ in beta — here’s how experts rank it, Waymo and 16 other power players in the world of self-driving cars

Drive Sally plans to bring hundreds of Teslas to New York’s streets in the near future, but for now, the company is still working out the kinks. Gonzalez suspects that the EVs may be better suited for for-hire “black cars” than yellow cabs, and he also said that the more-spacious Model Y would likely work better as a cab than the Model 3, but they’re still too expensive.

A different demonstration by the CAEIT shows the drones being launched from a helicopter.

“They’re still in the early development stage and the technical problems are yet to be resolved,” an insider from the People’s Liberation Army told SCMP. “One of the key concerns is the communications system and how to stop it from getting jammed.”

Three-dimensional (3D) nanostructured materials—those with complex shapes at a size scale of billionths of a meter—that can conduct electricity without resistance could be used in a range of quantum devices. For example, such 3D superconducting nanostructures could find application in signal amplifiers to enhance the speed and accuracy of quantum computers and ultrasensitive magnetic field sensors for medical imaging and subsurface geology mapping. However, traditional fabrication tools such as lithography have been limited to 1-D and 2-D nanostructures like superconducting wires and thin films.

Now, scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, Columbia University, and Bar-Ilan University in Israel have developed a platform for making 3D superconducting nano-architectures with a prescribed organization. As reported in the Nov. 10 issue of Nature Communications, this platform is based on the self-assembly of DNA into desired 3D shapes at the nanoscale. In DNA self-assembly, a single long strand of DNA is folded by shorter complementary “staple” strands at specific locations—similar to origami, the Japanese art of paper folding.

“Because of its structural programmability, DNA can provide an assembly platform for building designed nanostructures,” said co-corresponding author Oleg Gang, leader of the Soft and Bio Nanomaterials Group at Brookhaven Lab’s Center for Functional Nanomaterials (CFN) and a professor of chemical engineering and of applied physics and at Columbia Engineering. “However, the fragility of DNA makes it seem unsuitable for functional device fabrication and nanomanufacturing that requires inorganic materials. In this study, we showed how DNA can serve as a scaffold for building 3D nanoscale architectures that can be fully “converted” into inorganic materials like superconductors.”

The year is coming to a close and it’s safe to say Elon Musk’s prediction that his company would field one million “robotaxis” by the end of 2020 isn’t going to come true. In fact, so far, Tesla’s managed to produce exactly zero self-driving vehicles. And we can probably call off the singularity too. GPT-3 has been impressive, but the closer machines get to aping human language the easier it is to see just how far away from us they really are.

So where does that leave us, ultimately, when it comes to the future of AI? That depends on your outlook. Media hype and big tech’s advertising machine has set us up for heartbreak when we compare the reality in 2020 to our 2016-era dreams of fully autonomous flying cars and hyper-personalized digital assistants capable of managing the workload of our lives.

When and how did the first animals appear? Science has long sought an answer to this question. Uppsala University researchers and colleagues in Denmark have now jointly found, in Greenland, embryo-like microfossils up to 570 million years old, revealing that organisms of this type were dispersed throughout the world. The study is published in Communications Biology.

“We believe this discovery of ours improves our scope for understanding the period in Earth’s history when first appeared—and is likely to prompt many interesting discussions,” says Sebastian Willman, the study’s first author and a palaeontologist at Uppsala University.

The existence of animals on Earth around 540 million years ago (mya) is well substantiated. This was when the event in evolution known as the “Cambrian Explosion” took place. Fossils from a huge number of creatures from the Cambrian period, many of them shelled, exist. The first animals must have evolved earlier still; but there are divergent views in the on whether the extant fossils dating back to the Precambrian Era are genuinely classifiable as animals.