Toggle light / dark theme

Elon Musk’s SpaceX would like to further expanded testing of its Starlink satellite internet by connecting the network to aircraft.


SpaceX would like to further expand testing of its Starlink satellite internet by connecting the network to aircraft, the company revealed in a recent request to the Federal Communications Commission.

Elon Musk’s space company on Nov. 6 asked the FCC if SpaceX could add Starlink user terminals “on a Gulfstream jet for a period of up to two years.”

“SpaceX seeks experimental authority for operation of one user terminal aboard each of up to five private jets while they are on the ground at an airport, and in flight over the United States (including its territories and territorial waters),” the company wrote in the FCC filing.

For over a decade, theoretical physicists have predicted that the van Hove singularity of graphene could be associated with different exotic phases of matter, the most notable of which is chiral superconductivity.

A van Hove is essentially a non-smooth point in the density of states (DOS) of a crystalline solid. When reaches or is close to this specific energy level, a flat band develops in its electronic structure that can occupy an exceptionally large number of electrons. This leads to strong many-body interactions that promote or enable the existence of exotic states of matter.

So far, the exact degree to which the available energy levels of graphene need to be filled with electrons (i.e., “doped”) in order for individual phases to stabilize has been very difficult to determine using model calculations. Identifying or designing techniques that can be used to dope graphene to or beyond the van Hove singularity could ultimately lead to interesting observations related to exotic phases of matter, which could in turn pave the way towards the development of new graphene-based technology.

Titan, the already pretty weird moon of Saturn, just got a little bit weirder. Astronomers have detected cyclopropenylidene (C3H2) in its atmosphere — an extremely rare carbon-based molecule that’s so reactive, it can only exist on Earth in laboratory conditions.

In fact, it’s so rare that it has never before been detected in an atmosphere, in the Solar System or elsewhere. The only other place it can remain stable is the cold void of interstellar space. But it may be a building block for more complex organic molecules that could one day lead to life.

“We think of Titan as a real-life laboratory where we can see similar chemistry to that of ancient Earth when life was taking hold here,” said astrobiologist Melissa Trainer of NASA’s Goddard Space Flight Center, one of the chief scientists set to investigate the moon in the upcoming Dragonfly mission launching in 2027.