Toggle light / dark theme

Engineers at Cornell University have developed a new technique for 3D printing metallic objects – and it involves blasting titanium particles at supersonic speeds. The resulting metals are very porous, which makes them particularly useful for biomedical objects like implants and replacement joints.

Traditional 3D printing involves a nozzle depositing plastic, hydrogels, living cells or other materials layer by layer to build up an object. Metal parts and objects are usually 3D printed in other ways, such as firing a laser at a bed of metal powder to selectively melt sections into the desired shape, or firing metal powder at high speeds at a substrate to fuse the particles together.

The latter method is known as “cold spray,” and the new technique expands on that base. The Cornell team blasted titanium alloy particles, each measuring between 45 and 106 microns wide, at speeds up to 600 m (1,969 ft) per second (for reference, the speed of sound in air is around 340 m (1,115 ft) per second). The team calculated this as the ideal speed – any faster, and the particles would disintegrate too much on impact to bond to each other.

Aging link

~~~ “The telomere biology of humans is closer to the telomere biology of birds than those of traditional laboratory models. In both humans and birds, telomere length is measured in a minimally-invasive way from small blood samples,” says Collegium Researcher Antoine Stier from the University of Turku (Finland), the main author of the research article.

While authors of the study had reasons to expect shorter telomeres in chicks born from eggs injected with thyroid hormones, they were quite surprised to find that those chicks actually exhibited longer telomeres right after birth.” “Based on the natural decline of telomere length observed with age in the same collared flycatcher population, we estimated that chicks hatching from thyroid hormones injected eggs were approximately four years younger at birth than chicks hatched from control eggs,” adds Collegium Researcher Suvi Ruuskanen.

It’s twice as efficient as a chemical rocket.


Ultra Safe Nuclear Corporation (USNC) has designed a new thermal nuclear engine it says could carry astronauts to Mars in just three months—and back to Earth in the same amount of time. By using ceramic microcapsules of high assay low enriched uranium (HALEU) fuel, USNC’s thermal nuclear engine could cut the trip in half even from optimistic estimates.

🌌You like our badass universe. So do we. Let’s explore it together.

WASHINGTON — NASA formally certified SpaceX’s Crew Dragon spacecraft for transporting astronauts to and from the International Space Station, clearing the way for a Nov. 14 launch.

Agency officials completed the certification of the spacecraft by signing a document known as a Human Rating Certification Plan during a flight readiness review for the Crew-1 mission Nov. 10. That confirmed that SpaceX met all of NASA’s requirements for safely carrying astronauts on the Crew Dragon spacecraft and Falcon 9 launch vehicle.

“It’s just a tremendous day that is a culmination of a ton of work,” said Kathy Lueders, NASA associate administrator for human exploration and operations, at a Nov. 10 briefing about the flight readiness review. Lueders managed the commercial crew program at NASA for several years before being promoted to her current position in June. “It’s NASA saying to SpaceX you have shown us you can deliver a crew transportation capability that meets our requirements.”

The finding marks a major breakthrough in a search of almost 20 years, carried out in particle physics labs all over the world.

To understand what a tetraquark is and why the discovery is important, we need to step back in time to 1964, when particle physics was in the midst of a revolution. Beatlemania had just exploded, the Vietnam war was raging and two young radio astronomers in New Jersey had just discovered the strongest evidence ever for the Big Bang theory.

On the other side of the U.S., at the California Institute of Technology, and on the other side of the Atlantic, at CERN in Switzerland, two particle physicists were publishing two independent papers on the same subject. Both were about how to make sense of the enormous number of new particles that had been discovered over the past two decades.