Menu

Blog

Page 7233

Oct 13, 2020

Study: More Than 500 Vertebrates Poised To Go Extinct

Posted by in categories: biotech/medical, existential risks

We should save their DNA and resurrect them or keep in a bubble environment.


Close To Home

The researchers behind the study warned that each time an animal goes extinct, it also threatens humanity’s continued survival.

Continue reading “Study: More Than 500 Vertebrates Poised To Go Extinct” »

Oct 13, 2020

Wearable IT devices: Dyeing process gives textiles electronic properties

Posted by in categories: chemistry, computing, wearables

“Our goal was to integrate interactive functionalities directly into the fibers of textiles instead of just attaching electronic components to them,” says Jürgen Steimle, computer science professor at Saarland University. In his research group on human-computer interaction at Saarland Informatics Campus, he and his colleagues are investigating how computers and their operation can be integrated as seamlessly as possible into the physical world. This includes the use of electro-interactive materials.

Previous approaches to the production of these textiles are complicated and influence the haptics of the material. The new method makes it possible to convert textiles and garments into e-textiles, without affecting their original properties—they remain thin, stretchable and supple. This creates new options for quick and versatile experimentation with new forms of e-textiles and their integration into IT devices.

“Especially for devices worn on the body, it is important that they restrict movement as little as possible and at the same time can process high-resolution input signals”, explains Paul Strohmeier, one of the initiators of the project and a scientist in Steimle’s research group. To achieve this, the Saarbrücken researchers are using the in-situ polymerization process. Here, the are “dyed” into the fabric: a textile is subjected to a chemical reaction in a water bath, known as polymerization, which makes it electrically conductive and sensitive to pressure and stretching, giving it so-called piezoresistive properties. By “dyeing” only certain areas of a or polymerizing individual threads, the computer scientists can produce customized e-textiles.

Oct 13, 2020

New deep learning models: Fewer neurons, more intelligence

Posted by in categories: robotics/AI, transportation

Artificial intelligence has arrived in our everyday lives—from search engines to self-driving cars. This has to do with the enormous computing power that has become available in recent years. But new results from AI research now show that simpler, smaller neural networks can be used to solve certain tasks even better, more efficiently, and more reliably than ever before.

An international research team from TU Wien (Vienna), IST Austria and MIT (USA) has developed a new system based on the brains of tiny animals, such as threadworms. This novel AI-system can control a vehicle with just a few artificial neurons. The team says that system has decisive advantages over previous models: It copes much better with noisy input, and, because of its simplicity, its mode of operation can be explained in detail. It does not have to be regarded as a complex “black box”, but it can be understood by humans. This new deep learning model has now been published in the journal Nature Machine Intelligence.

Oct 13, 2020

A framework to increase the safety of robots operating in crowded environments

Posted by in categories: information science, robotics/AI, transportation

Humans are innately able to adapt their behavior and actions according to the movements of other humans in their surroundings. For instance, human drivers may suddenly stop, slow down, steer or start their car based on the actions of other drivers, pedestrians or cyclists, as they have a sense of which maneuvers are risky in specific scenarios.

However, developing robots and autonomous vehicles that can similarly predict movements and assess the risk of performing different actions in a given scenario has so far proved highly challenging. This has resulted in a number of accidents, including the tragic death of a pedestrian who was struck by a self-driving Uber vehicle in March 2018.

Researchers at Stanford University and Toyota Research Institute (TRI) have recently developed a framework that could prevent these accidents in the future, increasing the safety of autonomous vehicles and other robotic systems operating in crowded environments. This framework, presented in a paper pre-published on arXiv, combines two tools, a and a technique to achieve risk-sensitive control.

Oct 13, 2020

Easy-to-make, ultra-low power electronics could charge out of thin air

Posted by in categories: computing, internet, wearables

Researchers have developed a new approach to printed electronics which allows ultra-low power electronic devices that could recharge from ambient light or radiofrequency noise. The approach paves the way for low-cost printed electronics that could be seamlessly embedded in everyday objects and environments.

Electronics that consume tiny amounts of power are key for the development of the Internet of Things, in which everyday objects are connected to the internet. Many , from wearables to healthcare devices to smart homes and smart cities, need cost-effective transistors and that can function with minimal energy use.

Printed electronics are a simple and inexpensive way to manufacture electronics that could pave the way for low-cost on unconventional substrates—such as clothes, plastic wrap or paper—and provide everyday objects with ‘intelligence’.

Oct 13, 2020

HBO producirá una miniserie basada en la odisea espacial de Elon Musk

Posted by in categories: Elon Musk, space travel, sustainability

Esta producción, basada en el libro ‘Elon Musk: Tesla, SpaceX, and the Quest for a Fantastic Future’, girará en torno a Musk y su trabajo en SpaceX para impulsar los vuelos espaciales privados.

Oct 13, 2020

MIT Neuroscientists Discover a Molecular Mechanism That Allows Memories to Form

Posted by in categories: biotech/medical, neuroscience

Modifications to chromosomes in “engram” neurons control the encoding and retrieval of memories.

When the brain forms a memory of a new experience, neurons called engram cells encode the details of the memory and are later reactivated whenever we recall it. A new MIT study reveals that this process is controlled by large-scale remodeling of cells’ chromatin.

This remodeling, which allows specific genes involved in storing memories to become more active, takes place in multiple stages spread out over several days. Changes to the density and arrangement of chromatin, a highly compressed structure consisting of DNA and proteins called histones, can control how active specific genes are within a given cell.

Oct 13, 2020

Statins may reduce cancer risk through mechanisms separate to cholesterol

Posted by in categories: biotech/medical, genetics

Analysis revealed that variants in the HMGCR gene region, which represent proxies for statin treatment, were associated with overall cancer risk, suggesting that statins could lower overall cancer risk.


Cholesterol-lowering drugs called statins may reduce cancer risk in humans through a pathway unrelated to cholesterol, says a study published today in eLife.

Statins reduce levels of LDL-cholesterol, the so-called ‘bad’ cholesterol, by inhibiting an enzyme called HMG-CoA-reductase (HMGCR). Clinical trials have previously demonstrated convincing evidence that statins reduce the risk of heart attacks and other cardiovascular diseases. But evidence for the potential effect of statins to reduce the risk of is less clear.

Continue reading “Statins may reduce cancer risk through mechanisms separate to cholesterol” »

Oct 13, 2020

F-35 jet’s problematic lightning protection system set to receive fix

Posted by in categories: climatology, military

By the end of 2020, F-35s coming off Lockheed Martin’s production line will be equipped with a modified version of its lightning protection system that will allow the jet to fly in thunderstorms again.

Oct 13, 2020

A Force From “Nothing” Used to Control and Manipulate Objects

Posted by in categories: computing, quantum physics

A collaboration between researchers from The University of Western Australia and The University of California Merced has provided a new way to measure tiny forces and use them to control objects.

The research, published recently in Nature Physics, was jointly led by Professor Michael Tobar, from UWA’s School of Physics, Mathematics and Computing and Chief Investigator at the Australian Research Council Centre of Excellence for Engineered Quantum Systems and Dr. Jacob Pate from the University of Merced.

Professor Tobar said that the result allowed a new way to manipulate and control macroscopic objects in a non-contacting way, allowing enhanced sensitivity without adding loss.