Toggle light / dark theme

Abstract: Recent advancements in large language models (LLMs) have sparked optimism about their potential to accelerate scientific discovery, with a growing number of works proposing research agents that autonomously generate and validate new ideas. Despite this, no evaluations have shown that LLM systems can take the very first step of producing novel, expert-level ideas, let alone perform the entire research process. We address this by establishing an experimental design that evaluates research idea generation while controlling for confounders and performs the first head-to-head comparison between expert NLP researchers and an LLM ideation agent. By recruiting over 100 NLP researchers to write novel ideas and blind reviews of both LLM and human ideas, we obtain the first statistically significant conclusion on current LLM capabilities for research ideation: we find LLM-generated ideas are judged as more novel (p < 0.05) than human expert ideas while being judged slightly weaker on feasibility. Studying our agent baselines closely, we identify open problems in building and evaluating research agents, including failures of LLM self-evaluation and their lack of diversity in generation. Finally, we acknowledge that human judgements of novelty can be difficult, even by experts, and propose an end-to-end study design which recruits researchers to execute these ideas into full projects, enabling us to study whether these novelty and feasibility judgements result in meaningful differences in research outcome.

From: Chenglei Si [view email].

It was a career-defining (and perhaps life changing) moment when Dr. Vittorio Sebastiano, a reproductive biologist by training, realized that because we are able to create life, that same body of information could be harnessed to create youth — that is, radically reverse our biological aging process to a younger time point without losing cellular identity.

In 2014, he and his lab began unpacking this epiphany. They made the radical decision to conduct their investigations in human cells and tissue rather than in rodents, with the expectation that such a start would be a better bridge to human clinical trials.

Flash forward a decade and Dr. Sebastiano and his team stand poised to begin trials in humans. Dr. Sebastiano is, in my opinion, one of the most extraordinary scientists in the longevity space today who flies under the radar of most of us in functional medicine.

In this podcast — which is actually two-in-one because I continued the conversation with him on a second date — you’ll hear about the remarkable work they’re undertaking at his lab. For example: They’ve created a biological clock that encompasses the whole genome consisting of millions and millions of CpG sites. They are able to clearly demonstrate the reversal of bioage using their methodology — a cocktail of Yamanaka factors plus, with clear time limits — which changes the epigenome first, and in so doing influences all of the hallmarks of aging. Teaser: they’ve identified one intervention routinely used in clinical practice that influences their bio age clock in the same way that their cocktail does. What is it? I was riveted with this conversation, as I am sure you’ll be. Leave a review if you like it, and — Yes — let me know what you think. I know this will prompt deep questions for you, as it did for me. ~DrKF

During aging, the human methylome undergoes both differential and variable shifts, accompanied by increased entropy. The distinction between variably methylated positions (VMPs) and differentially methylated positions (DMPs), their contribution to epigenetic age, and the role of cell type heterogeneity remain unclear.

We conduct a comprehensive analysis of 32,000 human blood methylomes from 56 datasets (age range = 6–101 years). We find a significant proportion of the blood methylome that is differentially methylated with age (48% DMPs; FDR 0.005) and variably methylated with age (37% VMPs; FDR 0.005), with considerable overlap between the two groups (59% of DMPs are VMPs). Bivalent and Polycomb regions become increasingly methylated and divergent between individuals, while quiescent regions lose methylation more uniformly. Both chronological and biological clocks, but not pace-of-aging clocks, show a strong enrichment for CpGs undergoing both mean and variance changes during aging. The accumulation of DMPs shifting towards a methylation fraction of 50% drives the increase in entropy, smoothening the epigenetic landscape. However, approximately a quarter of DMPs exhibit anti-entropic effects, opposing this direction of change.

A new superhighway network has been identified by researchers, which enables significantly faster travel through the Solar System than was previously feasible. This network can facilitate the transportation of comets and asteroids from Jupiter to Neptune in under a decade and up to 100 astronomical units within a century.

The technology could facilitate swift transportation of spacecraft to the remote regions of our solar system while also aiding in the detection and understanding of nearby objects that pose a threat of colliding with our planet.

In a paper published on November 25, 2020, in the journal Science Advances, researchers have identified a series of interconnected arches forming space manifolds that extend from the asteroid belt to Uranus and beyond, which create a new “celestial autobahn.” These structures operate on a much shorter time scale of several decades, as opposed to the hundreds of thousands or millions of years characteristic of Solar System dynamics.

“The circumgalactic medium plays a huge role in that cycling of that gas,” said Dr. Nikole Nielsen.


What are the exact sizes of galaxies, and are they bigger than they appear in deep space images? This is what a recent study published in Nature Astronomy hopes to address as an international team of researchers investigated the dust cloud that has long been hypothesized to orbit galaxies, indicating that galaxies are bigger than they appear. This study holds the potential to help scientists better understand the formation and evolution of galaxies, along with where the galaxy ends, and open space begins.

For the study, the researchers examined what’s known as the circumgalactic medium (CGM), which is a gas reservoir that extends far beyond a galaxy’s observable boundary, within a star-forming galaxy located 270 million light-years from Earth. Using novel imaging methods with ASTRO 3D, the researchers were able to observe this galaxy’s CGM extends as far out as 100,000 light-years beyond the galaxy’s observable boundary. Additionally, the team reports the physical aspects of the gas cloud, which is comprised of oxygen and hydrogen, changed as the gas cloud extended farther out.

Alzheimer’s, Parkinson’s, and other neurological disorders can be seen as “dirty brain” diseases, where the brain struggles to clear out harmful waste. Aging is a key risk factor because, as we grow older, our brain’s ability to remove toxic buildup slows down. However, new research in mice demonstrates that it’s possible to reverse age-related effects and restore the brain’s waste-clearing process.

“This research shows that restoring cervical lymph vessel function can substantially rescue the slower removal of waste from the brain associated with age,” says Douglas Kelley, a professor of mechanical engineering at the University of Rochester. “Moreover, this was accomplished with a drug already being used clinically, offering a potential treatment strategy.”

Kelley is one of the lead authors of the study, which appears in the journal Nature Aging, along with Maiken Nedergaard, codirector the University’s Center for Translational Neuromedicine. The study is one of many collaborations carried out by researchers at Rochester’s Hajim School of Engineering & Applied Sciences and the Medical Center.