Toggle light / dark theme

Second, we chose 2 major Appraisals with well-established roles in emotion elicitation, but interactive game paradigms could also investigate the neural basis of other appraisals (e.g., novelty, social norms). Furthermore, our study did not elucidate the precise cognitive mechanisms of particular appraisals or their neuroanatomical substrates but rather sought to dissect distinct brain networks underlying appraisals and other emotion components in order to assess any transient synchronization among them during emotion-eliciting situations. Importantly, even though different appraisals would obviously engage different brain networks, a critical assumption of the CPM is that synchronization between these networks and other components would arise through similar mechanisms as found here.

Third, our task design and event durations were chosen for fMRI settings, with blocked conditions and sufficient repetitions of similar trials. The limited temporal resolution of fMRI did not allow the investigation of faster, within-level dynamics which may be relevant to emotions. Additionally, this slow temporal resolution and our brain-based synchronization approach are insufficient to uncover fast and recurrent interactions among component networks during synchronization, as hypothesized by the CPM. Nonetheless, our computational model for the peripheral synchronization index did include recurrence as one of its parameters, allowing us refine our model-based analysis of network synchronization in ways explicitly taking recurrent effects into account (see S1 Text and Table J in S1 Table). In any case, neither the correlation of a model-based peripheral index nor an instantaneous phase synchronization approach could fully verify this hypothesis at the neuronal level using fMRI. To address these limitations, future studies might employ other paradigms with different game events or other imaging analyses and methodologies with higher temporal resolution. Higher temporal resolution may also help shed light on causality factors hypothesized by the CPM, which could not be addressed here. Finally, our study focused on the 4 nonexperiential components of emotion, with feelings measured purely retrospectively for manipulation-check purposes. This approach was motivated conceptually by the point of view that an emotion can be characterized comprehensively by the combination of its nonexperiential parts [10] and methodologically by the choice to avoid self-report biases and dual task conditions in our experimental setting. However, future work will be needed to link precise moments of component synchronization more directly to concurrent measures along relevant emotion dimensions, without task biases, as previously examined in purely behavioral research [20].

Nevertheless, by investigating emotions from a dynamic multi-componential perspective with interactive situations and model-based parameters, our study demonstrates the feasibility of a new approach to emotion research. We provide important new insights into the neural underpinnings of emotions in the human brain that support theoretical accounts of emotions as transient states emerging from embodied and action-oriented processes which govern adaptive responses to the environment. By linking transient synchronization between emotion components to specific brain hubs in basal ganglia, insula, and midline cortical areas that integrate sensorimotor, interoceptive, and self-relevant representations, respectively, our results provide a new cornerstone to bridge neuroscience with psychological and developmental frameworks in which affective functions emerge from a multilevel integration of both physical/bodily and psychological/cognitive processes [62].

Controlling magnetism, essential for a wide range of technologies, is impaired by the impossibility of generating a maximum of magnetic field in free space. Here, we propose a strategy based on negative permeability to overcome this stringent limitation. We experimentally demonstrate that an active magnetic metamaterial can emulate the field of a straight current wire at a distance. Our strategy leads to an unprecedented focusing of magnetic fields in empty space and enables the remote cancellation of magnetic sources, opening an avenue for manipulating magnetic fields in inaccessible regions.

The study of visual illusions has proven to be a very useful approach in vision science. In this work we start by showing that, while convolutional neural networks (CNNs) trained for low-level visual tasks in natural images may be deceived by brightness and color illusions, some network illusions can be inconsistent with the perception of humans. Next, we analyze where these similarities and differences may come from. On one hand, the proposed linear eigenanalysis explains the overall similarities: in simple CNNs trained for tasks like denoising or deblurring, the linear version of the network has center-surround receptive fields, and global transfer functions are very similar to the human achromatic and chromatic contrast sensitivity functions in human-like opponent color spaces. These similarities are consistent with the long-standing hypothesis that considers low-level visual illusions as a by-product of the optimization to natural environments. Specifically, here human-like features emerge from error minimization. On the other hand, the observed differences must be due to the behavior of the human visual system not explained by the linear approximation. However, our study also shows that more ‘flexible’ network architectures, with more layers and a higher degree of nonlinearity, may actually have a worse capability of reproducing visual illusions. This implies, in line with other works in the vision science literature, a word of caution on using CNNs to study human vision: on top of the intrinsic limitations of the L + NL formulation of artificial networks to model vision, the nonlinear behavior of flexible architectures may easily be markedly different from that of the visual system.

Raspberry Pi and ROS Robotics are versatile exciting tools that allow you to build many wondrous projects. However, they are not always the easiest systems to manage and use… until now.

The Ultimate Raspberry Pi & ROS Robotics Developer Super Bundle will turn you into a Raspberry Pi and ROS Robotics expert in no time. With over 39 hours of training and over 15 courses, the bundle leaves no stone unturned.


There is almost nothing you won’t be able to do with your new-found bundle on Raspberry Pi and ROS Robotics.

Creative technology studio playtronica has found a way of making music with pretty much anything including vegetables. their electronic devices transform touch into midi notes making anything into a midi controller including one that turns the human body into a keyboard. how it works is by effectively creating a circuit between the device and human body or the fruit. it’s then connected to a computer so when you touch the instrument the circuit is closed, and a specified sound is played. the tools are designed to work with organic materials and mostly anything that has water inside.

Every day, we produce large quantities of urine, at no cost. So instead of flushing it down the toilet, what if it was transformed into something useful? The Down to Earth team takes a closer look.

Urine is made up of 95 percent water as well as other compounds such as nitrogen, phosphorus and potassium, all of which help plants grow. They are known as the “Big 3” primary nutrients used to produce synthetic fertilisers, a process that is both expensive and polluting.