Toggle light / dark theme

Turning off a newly identified enzyme could reverse a natural aging process in cells.

Research findings by a KAIST team provide insight into the complex mechanism of cellular senescence and present a potential therapeutic strategy for reducing age-related diseases associated with the accumulation of senescent cells.

Simulations that model molecular interactions have identified an enzyme that could be targeted to reverse a natural aging process called cellular senescence. The findings were validated with laboratory experiments on skin cells and skin equivalent tissues, and published in the Proceedings of the National Academy of Sciences (PNAS).

This is an “extremely close,” albeit safe, approach, with the object passing at a distance equivalent to around 13 percent of the average distance between our planet and the moon, astronomer Gianluca Masi from the Virtual Telescope Project told Newsweek.

The object, which is estimated to measure between 15–33 feet across, was discovered by the Pan-STARRS survey based in Maui, Hawaii, on September 17, 2020. This find was confirmed two days later by the Minor Planet Center, which is responsible for the designation of minor bodies in the solar system.

Initial observations suggested that the object was an asteroid. But scientists at CNEOS soon began to suspect that 2020 SO was not a normal asteroid.

You’re crazy for this one, Prince Rupert.


Have you heard of the wild, almost indestructible Prince Rupert’s Drop? Science Alert recently unearthed a video from Smarter Every Day that shows this strong-as-hell glass marvel actually shattering a bullet at a beautiful 150,000 frames per second.

⚗️ You love badass science projects. So do we. Let’s nerd out over them together.

Computer simulations have struggled to capture the impact of elusive particles called neutrinos on the formation and growth of the large-scale structure of the universe. But now, a research team from Japan has developed a method that overcomes this hurdle.

In a study published this month in the Astrophysical Journal, researchers led by the University of Tsukuba present simulations that accurately depict the role of in the evolution of the universe.

Why are these simulations important? One key reason is that they can set constraints on a currently unknown quantity: the neutrino mass. If this quantity is set to a particular value in the simulations and the differ from observations, that value can be ruled out. However, the constraints can be trusted only if the simulations are accurate, which was not guaranteed in previous work. The team behind this latest research aimed to address this limitation.

Well… it seems we can still be surprised. 😃


Cornered by a dangerous predator, a gecko can self-amputate its still twitching tail, creating a fleeting moment of distraction — a chance for the lizard to flee with its life.

Small reptiles such as geckos and skinks are well known for this remarkable ability to sacrifice and then rapidly regrow their tails. Now, to scientists’ surprise, it turns out that much larger alligators can regrow theirs too. But only while they’re young.

Juvenile American alligators (Alligator mississippiensis) can regrow up to 18 percent of their total body length back. This is about 23 cm or 9 inches of length.

Peter and Dan discuss transformations in healthcare as a result of the pandemic and consequent stay-at-home orders. Peter envisions a future wherein people don’t go to the hospital when they get sick, but instead have a hospital at their fingertips thanks to sensors, wearables, and an abundance of personalized medical data.

To hear past episodes: http://podcast.diamandis.com or Subscribe on Apple Podcasts: https://podcasts.apple.com/us/podcast/exponential-wisdom/id1001794471
Subscribe on Spotify: https://open.spotify.com/show/4kndtSutHbCBQNaDmdV1fU

Researchers are a step closer to realizing a new kind of memory that works according to the principles of spintronics which is analogous to, but different from, electronics. Their unique gallium arsenide-based ferromagnetic semiconductor can act as memory by quickly switching its magnetic state in the presence of an induced current at low power. Previously, such current-induced magnetization switching was unstable and drew a lot of power, but this new material both suppresses the instability and lowers the power consumption too.

The field of quantum computing often gets covered in the technical press; however, another emerging field along similar lines tends to get overlooked, and that is spintronics. In a nutshell, spintronic devices could replace some and offer greater performance at far low power levels. Electronic devices use the motion of electrons for power and communication. Whereas use a transferable property of stationary electrons, their angular momentum, or spin. It’s a bit like having a line of people pass on a message from one to the other rather than have the person at one end run to the other. Spintronics reduces the effort needed to perform computational or memory functions.

Spintronic-based memory devices are likely to become common as they have a useful feature in that they are nonvolatile, meaning that once they are in a certain state, they maintain that state even without power. Conventional computer memory, such as DRAM and SRAM made of ordinary semiconductors, loses its state when it’s powered off. At the core of experimental spintronic devices are that can be magnetized in opposite directions to represent the familiar binary states of 1 or 0, and this switching of states can occur very, very quickly. However, there has been a long and arduous search for the best materials for this job, as magnetizing spintronic materials are no simple matter.