Toggle light / dark theme

Quantum mechanics has an exciting feature: a single event can exist in a state of superposition – happening bothhereandthere, or bothtodayandtomorrow.

Such superposition is quite challenging to create as they are easily destroyed if any information about the event’s place and time leaks into the surrounding – and even if nobody records this information. Once superposition is created, they lead to observations that are very different from that of classical physics, questioning down to our very understanding of space and time.

Recently scientists from EPFL, MIT, and CEA Saclay demonstrate a state of vibration simultaneously at two different times. They evidence this quantum superposition by measuring the strongest class of quantum correlations between light beams that interact with the vibration.

In the quest for advanced vehicles with higher energy efficiency and ultra-low emissions, Oak Ridge National Laboratory researchers are accelerating a research engine that gives scientists and engineers an unprecedented view inside the atomic-level workings of combustion engines in real time.

The new capability is an engine built specifically to run inside a neutron beam line. This neutronic engine provides a unique sample environment that allows investigation of structural changes in new alloys designed for the environment of a high-temperature, advanced combustion engine operating in realistic conditions.

ORNL first unveiled the capability in 2017, when researchers successfully evaluated a small, prototype engine with a cylinder head cast from a new high-temperature aluminum-cerium alloy created at the lab. The experiment was the world’s first in which a running engine was analyzed by , using the VULCAN neutron diffractometer at the Department of Energy’s Spallation Neutron Source, or SNS, at ORNL.

If you’ve ever heard someone refer to the idea of “working in space,” you’d be forgiven for thinking they were describing a science-fiction plot. But the number of humans actively working beyond Earth’s atmosphere — and living significant chunks of their lives there, too — is about to start growing at a potentially exponential rate. Given how small that population is now, the growth might look slow at first — but it’s happening soon, and plans are in place to help it start ramping up quickly.

The main company leading those plans in the near-term is Axiom Space, a private space station service provider, and eventual operator. Axiom is founded and led by people with International Space Station experience and expertise, and the company already operates R&D missions on behalf of private clients on the ISS with the help of NASA astronauts. It’s planning to begin shuttling entire flights of private astronauts to the station starting in 2021, and it’s also building a new, commercial space station to ultimately replace the ISS on orbit once that one is decommissioned.

Axiom Space’s Chief Business Office Amir Blachman joined us at TC Sessions: Space last week on a panel that included NASA Chief of Exploration and Mission Planning Nujoud Merancy, Sierra Nevada Corporation senior vice president and former astronaut Janet Kavandi, as well as Space Exploration Architecture (SEArch+) co-founder Melodie Yashar. The panel was focused on how public and private entities are preparing for a (relatively near) future in which humans spend more time off Earth — and further away from it, too.

As we approach the end of 2020, according to the U.S. National Cancer Institute (NCI), we have had approximately 1, 806, 590 new cases of cancer diagnosed in the United States, with 606, 520 deaths. Cancer continues to be the leading causes of death worldwide. In 2018, there were 18.1 million new cases and 9.5 million cancer-related deaths worldwide.

By 2040, the number of new cancer cases per year is expected to rise to 29.5 million and the number of cancer-related deaths to 16.4 million.

Dr. Azra Raza, MD, is the Chan Soon-Shiong Professor of Medicine, in the Department of Medicine, Division of Hematology / Oncology, and Director of the Myelodysplastic Syndrome (MDS) Center, at the Columbia University Medical Center.

Previously, Dr. Raza was the Chief of Hematology-Oncology and the Gladys Smith Martin Professor of Oncology at the University of Massachusetts.

Circa 2002


The potential threat of biological warfare with a specific agent is proportional to the susceptibility of the population to that agent. Preventing disease after exposure to a biological agent is partially a function of the immunity of the exposed individual. The only available countermeasure that can provide immediate immunity against a biological agent is passive antibody. Unlike vaccines, which require time to induce protective immunity and depend on the host’s ability to mount an immune response, passive antibody can theoretically confer protection regardless of the immune status of the host. Passive antibody therapy has substantial advantages over antimicrobial agents and other measures for postexposure prophylaxis, including low toxicity and high specific activity. Specific antibodies are active against the major agents of bioterrorism, including anthrax, smallpox, botulinum toxin, tularemia, and plague. This article proposes a biological defense initiative based on developing, producing, and stockpiling specific antibody reagents that can be used to protect the population against biological warfare threats.

Defense strategies against biological weapons include such measures as enhanced epidemiologic surveillance, vaccination, and use of antimicrobial agents, with the important caveat that the final line of defense is the immune system of the exposed individual. The potential threat of biological warfare and bioterrorism is inversely proportional to the number of immune persons in the targeted population. Thus, biological agents are potential weapons only against populations with a substantial proportion of susceptible persons. For example, smallpox virus would not be considered a useful biological weapon against a population universally immunized with vaccinia.

Vaccination can reduce the susceptibility of a population against specific threats provided that a safe vaccine exists that can induce a protective response. Unfortunately, inducing a protective response by vaccination may take longer than the time between exposure and onset of disease. Moreover, many vaccines require multiple doses to achieve a protective immune response, which would limit their usefulness in an emergency vaccination program to provide rapid prophylaxis after an attack. In fact, not all vaccine recipients mount a protective response, even after receiving the recommended immunization schedule. Persons with impaired immunity are often unable to generate effective response to vaccination, and certain vaccines may be contraindicated for them (1). For example, the vaccine against hepatitis B does not elicit an antibody response in approximately 10% of vaccines, and the percentage of nonresponders is substantially higher in immunocompromised persons (1).

O,.o circa 2018.


Bats’ extraordinary super-immunity long has fascinated virologists.

The U.S. military has a long history of enlisting the help of animals in warfare. The bottlenose dolphin’s sophisticated bio sonar enabled the Navy to detect and clear underwater bombs during the Iraq War, and homing pigeons played a vital role as secret messengers during both world wars, with some awarded medals for bravery.

But there is one animal the military has had significantly less success in conscripting, and that is the bat.

Lately, there has been a flood of interest in gravitational waves. After the first official detection at LIGO / Virgo in 2015, data has been coming in showing how common these once theoretical phenomena actually are. Usually they are caused by unimaginably violent events, such as a merging pair of black holes. Such events also have a tendency to emit another type of phenomena—light. So far, it has been difficult to observe any optical associated with these gravitational-wave emitting events. But a team of researchers hope to change that with the full implementation of the Gravitation-wave Optical Transient Observer (GOTO) telescope.

The GOTO project is designed specifically to find and monitor the parts of the sky that other instruments, such as LIGO, detect from. Its original incarnation, known as the GOTO-4 Prototype, was brought online in 2017. Located in La Palma, in the Canary Islands, this prototype consisted of four “unit telescopes” (UTs) housed in an 18ft clamshell dome. In 2020, this prototype was upgraded to 8 UTs, allowing for a much wider view of the sky.

The wide field of view is necessary for its work detecting gravitational-wave based optical , as directionality of gravitational waves are notoriously difficult to pin down. The wider the field of view of a , the more likely it will be able to detect an event that happens.