Toggle light / dark theme

Is ADHD actually a superpower that goes out of control from time to time? Can it be turned into an advantage?


Unclench. Mary is just an urban legend—a case example of how people with Attention-Deficit/Hyperactivity Disorder can hyperfocus on a task for hours, losing all awareness of their surroundings. Hers is a story that people in the ADHD community tell themselves so we will feel less alone.

“We all hate the name ADHD,” says Elaine Taylor-Klaus, cofounder of Atlanta consultancy group ImpactADHD. Because the word “deficit” is in the name, many incorrectly assume having ADHD means you can’t pay attention. Instead, ADHDers often pay more attention to certain tasks than we should. It’s called hyperfocus.

Kimberly Gordon, a psychiatrist at Sheppard Pratt Health System in Baltimore, explains the symptom as “an intense, deep concentration on a specific task.” Like our mythological Mary, Gordon says, “When individuals with ADHD hyperfocus on one thing, they tend to block out everything else going on around them. The brain sends off signals of activity, pleasure, and engagement as they are immersed in a task while hyperfocused.”

The United States generates seven million tons of sewage sludge annually, enough to fill 2, 500 Olympic-sized swimming pools. While a portion of this waste is repurposed for manure and other land applications, a substantial amount is still disposed of in landfills. In a new study, Texas A&M University researchers have uncovered an efficient way to use leftover sludge to make biodegradable plastics.

In the September issue of the journal American Chemical Society (ACS) Omega, the researchers report that the bacterium Zobellella denitrificans ZD1, found in mangroves, can consume sludge and wastewater to produce polyhydroxybutyrate, a type of biopolymer that can be used in lieu of petroleum-based plastics. In addition to reducing the burden on landfills and the environment, the researchers said Zobellella denitrificans ZD1 offers a way to cut down upstream costs for bioplastics manufacturing, a step toward making them more competitively priced against regular plastics.

“The price of raw materials to cultivate biopolymer-producing bacteria accounts for 25–45% of the total production cost of manufacturing bioplastics. Certainly, this cost can be greatly reduced if we can tap into an alternate resource that is cheaper and readily obtainable,” said Kung-Hui (Bella) Chu, professor in the Zachry Department of Civil and Environmental Engineering. “We have demonstrated a potential way to use municipal wastewater-activated sludge and agri-and aqua-culture industrial wastewater to make biodegradable plastics. Furthermore, the does not require elaborate sterilization processes to prevent contamination from other microbes, further cutting down operating and production costs of bioplastics.”

Science fiction is shifting into reality. With humanity’s plans to return to the moon this decade and further ambitions to travel to Mars in the next, we need to figure out how to keep astronauts healthy for these years-long missions. One solution long championed by science fiction is suspended animation, or putting humans in a hibernation-like sleep for the duration of travel time.

We can turn to nature for guidance and a potential solution to this challenge.

Light-emitting diodes—LEDs—can do way more than illuminate your living room. These light sources are useful microelectronics too.

Smartphones, for example, can use an LED proximity sensor to determine if you’re holding the phone next to your face (in which case the screen turns off). The LED sends a pulse of light toward your face, and a timer in the phone measures how long it takes that light to reflect back to the phone, a proxy for how close the phone is to your face. LEDs are also handy for distance measurement in autofocus cameras and gesture recognition.

One problem with LEDs: It’s tough to make them from . That means LED sensors must be manufactured separately from their device’s silicon-based processing chip, often at a hefty price. But that could one day change, thanks to new research from MIT’s Research Laboratory of Electronics (RLE).

Although a single cataclysmic event gained most attention this year — the COVID pandemic — there were many other newsworthy developments in science and research, from daring space missions to room-temperature superconductors.


Mars missions, record‑breaking wildfires and a room‑temperature superconductor are among this year’s top non‑COVID stories.