Toggle light / dark theme

Are you fed up with all the negativity?

Between Tesla, SpaceX (Starship & Starlink), 5G, mRNA vaccines and more, 2020 has been an eventful year full of breakthroughs all set to make our lives better, and ushering in a sci-fi future quicker than ever…so I brought them all together in one video to celebrate the great people working tirelessly to make our future better.

If you want a feel good boost, why not drop by and spend a few mins revelling in the positive stories of 2020.

Have an awesome New Year!!

Like.


Rookie NASA astronaut Raja Chari — a former U.S. Air Force fighter pilot — veteran physician-astronaut Tom Marshburn, and European Space Agency astronaut Matthias Maurer have been assigned to fly to the International Space Station on a SpaceX Crew Dragon spaceship in the fall of 2021.

A fourth crew member will be added to the mission at a later date, following a review by NASA and its international partners, the U.S. space agency said in a Dec. 14 announcement.

Chari, Marshburn, Maurer, and the fourth crew member will launch on the third operational flight of a SpaceX Crew Dragon capsule to the International Space Station. The mission, designated Crew-3, will launch in the fall of 2021 from the Kennedy Space Center in Florida on a SpaceX Falcon 9 rocket and last into the spring of 2022.

The Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) is home to many interdisciplinary projects which benefit from the synergy of a wide range of expertise available at the institute. One such project is the study of black holes that could have formed in the early universe, before stars and galaxies were born.

Such primordial black holes (PBHs) could account for all or part of dark matter, be responsible for some of the observed gravitational waves signals, and seed supermassive black holes found in the center of our Galaxy and other galaxies. They could also play a role in the synthesis of heavy elements when they collide with neutron stars and destroy them, releasing neutron-rich material.

In particular, there is an exciting possibility that the mysterious dark matter, which accounts for most of the matter in the universe, is composed of primordial black holes. The 2020 Nobel Prize in physics was awarded to a theorist, Roger Penrose, and two astronomers, Reinhard Genzel and Andrea Ghez, for their discoveries that confirmed the existence of black holes. Since black holes are known to exist in nature, they make a very appealing candidate for dark matter.

Quantum computer: One of the obstacles for progress in the quest for a working quantum computer has been that the working devices that go into a quantum computer and perform the actual calculations, the qubits, have hitherto been made by universities and in small numbers. But in recent years, a pan-European collaboration, in partnership with French microelectronics leader CEA-Leti, has been exploring everyday transistors—that are present in billions in all our mobile phones—for their use as qubits. The French company Leti makes giant wafers full of devices, and, after measuring, researchers at the Niels Bohr Institute, University of Copenhagen, have found these industrially produced devices to be suitable as a qubit platform capable of moving to the second dimension, a significant step for a working quantum computer. The result is now published in Nature Communications.

Quantum dots in two dimensional array is a leap ahead

One of the key features of the devices is the two-dimensional array of quantum dots. Or more precisely, a two by two lattice of quantum dots. “What we have shown is that we can realize single electron control in every single one of these quantum dots. This is very important for the development of a , because one of the possible ways of making qubits is to use the spin of a single electron. So reaching this goal of controlling the single electrons and doing it in a 2-D array of was very important for us”, says Fabio Ansaloni, former Ph.D. student, now postdoc at center for Quantum Devices, NBI.

A multitasking nanomachine that can act as a heat engine and a refrigerator at the same time has been created by RIKEN engineers. The device is one of the first to test how quantum effects, which govern the behavior of particles on the smallest scale, might one day be exploited to enhance the performance of nanotechnologies.

Conventional heat engines and refrigerators work by connecting two pools of fluid. Compressing one pool causes its fluid to heat up, while rapidly expanding the other pool cools its fluid. If these operations are done in a periodic cycle, the pools will exchange and the system can be used as either a heat engine or a fridge.

It would be impossible to set up a macroscale machine that does both tasks simultaneously—nor would engineers want to, says Keiji Ono of the RIKEN Advanced Device Laboratory. “Combining a traditional heat engine with a refrigerator would make it a completely useless machine,” he says. “It wouldn’t know what to do.”

Japanese company Sumitomo Forestry has announced a joint development project with Kyoto University to test the idea of using wood as a component in satellite construction. As part of the announcement, officials with Sumitomo Forestry told reporters that work on the project will begin with experiments designed to test different types of wood in extreme environments.

Some of the major components in most satellites include aluminum, Kevlar and aluminum alloys, which are able to withstand both temperature extremes and constant bombardment by radiation—all in a vacuum. Unfortunately, these characteristics also allow satellites to remain in orbit long after their usefulness has ended, resulting in constant additions to the space junk orbiting the planet. According to the World Economic Forum, there are currently approximately 6000 satellites circling the Earth but only 60% of them are still in use. Some in the field have predicted that nearly 1000 satellites will be launched into space each year over the coming decade. Considering their lifespan, this suggests there could be thousands more dead satellites orbiting the planet in the coming years. This space debris poses a significant threat to other satellites (they all travel thousands of miles per hour) and also to manned space missions.

Albert Einstein once said, “You have to learn the rules of the game, and then you have to play better than anyone else.” That could well be the motto at DeepMind, as a new report reveals it has developed a program that can master complex games without even knowing the rules.

DeepMind, a subsidiary of Alphabet, has previously made groundbreaking strides using reinforcement learning to teach programs to master the Chinese board Go and the Japanese strategy game Shogi, as well as chess and challenging Atari video games. In all those instances, computers were given the rules of the game.

But Nature reported today that DeepMind’s MuZero has accomplished the same feats—and in some instances, beat the earlier programs—without first learning the rules.