Toggle light / dark theme

Fast-forwarding quantum calculations skips past the time limits imposed by decoherence, which plagues today’s machines.

A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

“Quantum computers have a limited time to perform calculations before their useful quantum nature, which we call coherence, breaks down,” said Andrew Sornborger of the Computer, Computational, and Statistical Sciences division at Los Alamos National Laboratory, and senior author on a paper announcing the research. “With a new algorithm we have developed and tested, we will be able to fast forward quantum simulations to solve problems that were previously out of reach.”

These two Kenyan men are stealing hearts with their amazing inventions that can be a major way to provide much better technological aid to people with disabilities! Watch this video to see these mind-blowing gadgets that work on the commands given by the brain! And we haven’t even told the best part, due to the lack of resources, most of these gadgets are made of wood or old computer parts! Well, imagine what all they can achieve if provided with better technology and resources!

It was invented by David Gathu and Moses Kinyua and is powered by brain signals.

The signals are converted into an electric current by a “NeuroNode” biopotential headset receiver. This electrical current is then driven into the robot’s circuitry, which gives the arm its mobility.

The arm has several component materials including recycled wood and moves vertically and horizontally.

Juniorr Amenra.

· —3—h ·

Social behavior (SB) is a fundamental hallmark of human interaction. Repeated administration of low doses of the 5-HT2A agonist lysergic acid diethylamide (LSD) in mice enhances SB by potentiating 5-HT2A and AMPA receptor neurotransmission in the mPFC via an increasing phosphorylation of the mTORC1, a protein involved in the modulation of SB. Moreover, the inactivation of mPFC glutamate neurotransmission impairs SB and nullifies the prosocial effects of LSD. Finally, LSD requires the integrity of mTORC1 in excitatory glutamatergic, but not in inhibitory neurons, to produce prosocial effects. This study unveils a mechanism contributing to the role of 5-HT2A agonism in the modulation of SB.

All study data are included in the article and supporting information.

Building a corn cob—cell by cell, gene by gene.


Corn hasn’t always been the sweet, juicy delight that we know today. And, without adapting to a rapidly changing climate, it is at risk of losing its place as a food staple. Putting together a plant is a genetic puzzle, with hundreds of genes working together as it grows. Cold Spring Harbor Laboratory (CSHL) Professor David Jackson worked with Associate Professor Jesse Gillis to study genes involved in corn development. Their teams analyzed thousands of individual cells that make up the developing corn ear. They created the first anatomical map that shows where and when important genes turn on and off during key steps in development. This map is an important tool for growing better crops.