Toggle light / dark theme

We can immediately supersede the Mojo Vision approach for retinal projection, with an interim projection system using metalenses. The Mojo Lens approach is to try to put everything, including the television screen, projection method and energy source onto one contact lens. With recent breakthroughs in scaling up the size of metalenses, an approach utilizing a combination of a contact metalens and a small pair of glasses can be utilized. This is emphatically not the Google Glass approach, which did not use modern metalenses. The system would work as follows:

1)Thin TV cameras are mounted on both sides of a pair of wearable glasses.

2)The images from these cameras are projected via projection metalenses in a narrow beam to the center of the pupils.

3)A contact lens with a tiny metalens mounted in the center, directly over the pupil, projects this projected beam outwards, through the pupil, onto the full width of the curved retina.

The end result would be a 360 degree, full panorama image. This image can either be a high resolution real time vision of the wearer’s surroundings, or can be a projection of a movie, or augmented reality superimposed on the normal field of vision. It can inherently be full-color 3D. Of course such a system will be complemented with ear phones. Modern hearing aids are already so small they can barely be seen, and have batteries that last a week. A pair of ear phones will also allow full 3D sound and also will be the audible complement of augmented vision.

As commercial space companies increase the cadence of successful rocket launches, access to space is becoming more routine for both government and commercial interests. But even with regular launches, modern rockets impose mass and volume limits on the payloads they deliver to orbit. This size constraint hinders developing and deploying large-scale, dynamic space systems that can adapt to changes in their environment or mission.

DARPA’s Operational Fires (OpFires) program, which is developing a ground-launched intermediate-range hypersonic weapons system, is advancing to a new phase. Phase 3b will involve full-scale missile fabrication, assembly, and flight testing from a launch vehicle. Lockheed Martin Missiles and Fire Control was awarded this new contract modification after leading a successful Phase 3a integrated system preliminary design review that resulted in a comprehensive design and test plan.

DARPA’s Robotic Autonomy in Complex Environments with Resiliency — Simulation (RACER-Sim) project is seeking innovations in technologies that bridge the gap from simulation to the real world and significantly reduce the cost of off-road autonomy development. DARPA invites proposals for promising solutions that support these goals.

DARPA’s TRAnsformative DESign (TRADES) program, which began in 2017, set out to develop foundational design tools needed to explore the vast space opened by new materials and additive manufacturing processes commonly called 3D printing. The program recently concluded having successfully developed new mathematics and computational techniques, including artificial intelligence and machine learning, that will allow future designers to create previously unimaginable shapes and structures of interest to defense and commercial manufacturing.

After three months of reviewing more than 13000 hours of hacking exploits conducted by more than 580 cybersecurity researchers, DARPA today announced that its Finding Exploits to Thwart Tampering (FETT) Bug Bounty successfully proved the value of the secure hardware architectures developed under its System Security Integration Through Hardware and Firmware (SSITH) program while pinpointing critical areas to further harden defenses.

The U.S. military routinely deploys throughout the world where warfighters can potentially be exposed to regional endemic diseases as well as chemical, biological, radiological, or nuclear (CBRN) threats. Rapid access to medical countermeasures (MCMs) against these threats is critical to protect Defense Department (DoD) personnel and local populations; however, manufacturing, stockpiling, and distribution issues remain.