Toggle light / dark theme

Biological systems come in all shapes, sizes and structures. Some of these structures, such as those found in DNA, RNA and proteins, are formed through complex molecular interactions that are not easily duplicated by inorganic materials.

A research team led by Richard Robinson, associate professor of materials science and engineering, discovered a way to bind and stack nanoscale clusters of copper molecules that can self-assemble and mimic these complex biosystem structures at different length scales. The clusters provide a platform for developing new catalytic properties that extend beyond what traditional materials can offer.

The nanocluster core connects to two copper caps fitted with special binding molecules, known as ligands, that are angled like propeller blades.

RUDN chemists have synthesized metal complexes on the basis of the organoelemental substance silsesquioxane that consists of an organic and an inorganic part. Such hybrid systems may be used as efficient catalysts, for example, to obtain alcohols from alkanes. The work was published in the Inorganic Chemistry journal.

Physical and chemical parameters of any material or substance are limited and cannot be infinitely improved. So scientists work on hybrid materials that combine different components and therefore demonstrate new properties. In modern chemistry, special attention is paid to compounds that consist of metal centers and organic “bridges” that keep them together. Such objects have a number of valuable properties and may be used for industrial purposes: catalysis, storage of gases, accurate separation of mixed . They can also be used to create chemical sensors and agents to deliver drugs to their targets in the body.

Hybrid organoelemental substances such as silsesquioxanes consist of an inorganic main chain Si-O-Si and an organic framework of Si atoms. Compounds like this can be formed when metal atoms are added to carcass structures with promising catalytic and magnetic properties. RUDN chemists suggested a new approach to such compounds based on the use of additional complex-forming substances (ligands).

Every time a shuttle docks with the International Space Station (ISS), a delicate dance unfolds between the shuttle’s docking system and its counterpart on the station. Thanks to international standards, these mechanisms are universally compatible, ensuring astronauts and cargo can safely and seamlessly enter the station.

A similar challenge arises at the microscopic level when (LNPs)—the revolutionary drug vehicles behind the COVID-19 vaccines—attempt to deliver mRNA to cells. Optimizing the design and delivery of LNPs can greatly enhance their ability to deliver mRNA successfully, empowering cells with the disease-fighting instructions needed to transform medicine.

Researchers at Tel Aviv University have achieved a breakthrough in drug delivery: they have successfully transported lipid nanoparticles encapsulating messenger RNA (mRNA) to the immune system of the small and large intestines—bypassing the liver upon systemic administration. By simply altering the composition of the nanoparticles, the researchers demonstrated that mRNA-based drugs can be directed straight to target cells, avoiding the liver.

The Tel Aviv University study was led by post-doctoral fellow Dr. Riccardo Rampado together with Vice President for R&D Prof. Dan Peer, a pioneer in the development of mRNA therapeutics and Director of the Laboratory of Precision Nano-Medicine at the Shmunis School of Biomedical and Cancer Research. The study was published on the cover of the journal Advanced Science.

“Everything injected into the bloodstream eventually ends up in the liver—that’s just how our anatomy works,” explains Prof. Peer. “This poses two challenges. First, drugs intended to target specific cells in particular organs may be toxic to the liver. Second, we don’t want drugs to get ‘stuck’ in the liver.

The electronics of the future can be made even smaller and more efficient by getting more memory cells to fit in less space. One way to achieve this is by adding the noble gas xenon when manufacturing digital memories.

This has been demonstrated by researchers at Linköping University in a study published in Nature Communications. This technology enables a more even material coating even in small cavities.

Twenty-five years ago, a camera memory card could hold 64 megabytes of information. Today, the same physical size memory card can hold 4 terabytes—over 60,000 times more information.

As rising seas lap at its shore, Tuvalu faces an existential threat. In an effort to preserve the tiny island nation in the middle of the Pacific Ocean, its government has been building a “digital twin” of the entire country.

Digital twins are exactly what they sound like—a virtual double or replica of a physical, real-world entity. Scientists have been creating of everything from molecules, to infrastructure, and even entire planets.

It’s also now possible to construct a digital twin of an individual person. In other words, a “digital doppelganger.”

Electrochemical stimuli-responsive materials are gaining more attention in the world of display technology. Based on external stimuli, such as low voltage, these materials can instantaneously undergo electrochemical reactions.

These electrochemical reactions can result in the production of different colors, enhancing options. An electrochemical system consists of electrodes and electrolytes. Combining the luminescent and coloration molecules on the electrodes instead of the electrolyte can offer higher efficiencies and stability for display devices.

To this end, a research team from Japan employed clay membranes to effectively integrate the coloration and luminescence molecules. Their innovative dual-mode electrochemical device merges the ability to emit light and change color, offering a highly adaptable and energy-efficient solution for modern displays.

A class of synthetic soft materials called liquid crystal elastomers (LCEs) can change shape in response to heat, similar to how muscles contract and relax in response to signals from the nervous system. 3D printing these materials opens new avenues to applications, ranging from soft robots and prosthetics to compression textiles.

Controlling the material’s properties requires squeezing this elastomer-forming ink through the of a 3D printer, which induces changes to the ink’s internal structure and aligns rigid building blocks known as mesogens at the molecular scale. However, achieving specific, targeted alignment, and resulting properties, in these shape-morphing materials has required extensive trial and error to fully optimize printing conditions. Until now.

In a new study, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), Princeton University, Lawrence Livermore National Laboratory, and Brookhaven National Laboratory worked together to write a playbook for printing liquid crystal elastomers with predictable, controllable alignment, and hence properties, every time.

An Oregon State University researcher has helped create a new 3D printing approach for shape-changing materials that are likened to muscles, opening the door for improved applications in robotics as well as biomedical and energy devices.

The liquid crystalline elastomer structures printed by Devin Roach of the OSU College of Engineering and collaborators can crawl, fold and snap directly after printing. The study is published in the journal Advanced Materials.

“LCEs are basically soft motors,” said Roach, assistant professor of mechanical engineering. “Since they’re soft, unlike regular motors, they work great with our inherently soft bodies. So they can be used as implantable medical devices, for example, to deliver drugs at targeted locations, as stents for procedures in target areas, or as urethral implants that help with incontinence.”