Toggle light / dark theme

Using the James Webb Space Telescope (JWST), astronomers have characterized the atmosphere of a hot super-Neptune exoplanet designated WASP-166 b. As a result, they found that the atmosphere of this alien world contains water and carbon dioxide. Their findings were reported Dec. 31 on the arXiv preprint server.

WASP-166 b is about seven times larger and 32 times more massive than the Earth. It orbits its every 5.44 days, at a distance of approximately 0.067 AU from it. The planet is relatively hot as its equilibrium temperature is estimated to be 1,270 K. The parameters of WASP-166 make it a representative of the so-called hot Neptune desert—a region of parameter space at high insolation fluxes and intermediate planet radii that is very sparsely populated.

The parent star WASP-166, which is located some 368 light years away, has a spectral type of F9V, and is about 20% larger and more massive than the sun. The star has an effective temperature of 6,050 K, metallicity at a level of 0.19 dex, and its age is estimated to be 2.1 billion years.

Based on a material view and reductionism, science has achieved great success. These cognitive paradigms treat the external as an objective existence and ignore internal consciousness. However, this cognitive paradigm, which we take for granted, has also led to some dilemmas related to consciousness in biology and physics. Together, these phenomena reveal the interaction and inseparable side of matter and consciousness (or body and mind) rather than the absolute opposition. However, a material view that describes matter and consciousness in opposition cannot explain the underlying principle, which causes a gap in interpretation. For example, consciousness is believed to be the key to influencing wave function collapse (reality), but there is a lack of a scientific model to study how this happens. In this study, we reveal that the theory of scientific cognition exhibits a paradigm shift in terms of perception. This tendency implies that reconciling the relationship between matter and consciousness requires an abstract theoretical model that is not based on physical forms. We propose that the holistic cognitive paradigm offers a potential solution to reconcile the dilemmas and can be scientifically proven. In contrast to the material view, the holistic cognitive paradigm is based on the objective contradictory nature of perception rather than the external physical characteristics. This cognitive paradigm relies on perception and experience (not observation) and summarizes all existence into two abstract contradictory perceptual states (Yin-Yang). Matter and consciousness can be seen as two different states of perception, unified in perception rather than in opposition. This abstract perspective offers a distinction from the material view, which is also the key to falsification, and the occurrence of an event is inseparable from the irrational state of the observer’s conscious perception. Alternatively, from the material view, the event is random and has nothing to do with perception. We hope that this study can provide some new enlightenment for the scientific coordination of the opposing relationship between matter and consciousness.

Keywords: contradiction; free energy principle; hard problem of consciousness; holistic philosophy; perception; quantum mechanics; reductionism.

Copyright © 2022 Chen and Chen.

Spotting flaws is sometimes the first ripple in making waves of innovation.

Comparing directly observed with the latest advanced simulations, researchers from the Research Organization of Information and Systems (ROIS) and their colleagues have revealed significant limitations in current atmospheric modeling. Their findings emphasize the complexities of these atmospheric waves and their impacts on weather and climate systems.

The study was published in the Journal of the Meteorological Society of Japan on Sept. 2.

A new device produces ammonia from air and wind energy, offering a sustainable alternative to fossil fuel-dependent methods for agriculture and clean energy applications.

The air we breathe holds the key to more sustainable agriculture, thanks to an innovative breakthrough by researchers at Stanford University and King Fahd University of Petroleum and Minerals in Saudi Arabia. They have created a prototype device that uses wind energy to extract nitrogen from the air and convert it into ammonia—a critical ingredient in fertilizer.

If fully developed, this method could replace the traditional process of producing ammonia, which has been in use for over a century. The conventional method combines nitrogen and hydrogen at high pressures and temperatures, consuming 2% of the world’s energy and generating 1% of annual carbon dioxide emissions due to its reliance on natural gas. This new approach offers a cleaner, more energy-efficient alternative.

Mirror life, a concept involving synthetic organisms with reversed molecular structures, carries significant risks despite its potential for medical advancements.

Experts warn that mirror bacteria could escape natural biological controls, potentially evolving to exploit resources in ways that disrupt ecosystems and pose unforeseen dangers to the environment and public health.

Mirror Life

The article presents an equation of state (EoS) for fluid and solid phases using artificial neural networks. This EoS accurately models thermophysical properties and predicts phaseions, including the critical and triple points. This approach offers a unified way to understand different states of matter.

Aion from ballistic to diffusive motion within 10 ps is observed in supercritical carbon dioxide with X-ray photon correlation spectroscopy. Collisions of unbound molecules with clusters are responsible for the ultrafast momentum exchange.

Tires and degrading garbage shed tiny pieces of plastic into the air, creating a form of air pollution that UC San Francisco researchers suspect may be causing respiratory and other illnesses.

A review of some 3,000 studies implicates these particles in a variety of serious health problems. These include male and female infertility, and poor lung function. The particles also may contribute to chronic pulmonary inflammation, which can increase the risk of lung cancer.

“These microplastics are basically particulate matter air pollution, and we know this type of air pollution is harmful,” said Tracey J. Woodruff, Ph.D., MPH, a professor of obstetrics, gynecology and at UCSF.

It added that the average annual cost of poor mental health per employee in finance and insurance was £5,379, more than double that in any of the 14 other sectors covered.

The report adds to a growing volume of research on the impact of a global mental health crisis on companies and the workplace.

According to the World Health Organization and the International Labour Organization, about 12bn working days are lost every year to depression and anxiety, costing the global economy $1tn annually.

In the San Diego suburb of Carlsbad, a new plant to desalinate seawater is almost ready. For about a billion dollars, it will produce 7 percent of the area’s drinking water, courtesy of the Pacific Ocean. But in these times of record drought, two Texas entrepreneurs are advocating another solution: Instead of pulling fresh water out of the sea, they want to pull it out of the air. The machine they’re developing at Trinity University in San Antonio, called an atmospheric water generator, is still in its pilot phrase. But to hear Moses West tell it, if the climate conditions are right, the AWG has the potential to end drought.

West, who’s testing the machine along with business partner John Vollmer, calls himself “a water farmer.” He explains that there are three potential sources of human drinking water: groundwater, rivers and gas. Thanks to NASA’s GRACE satellite system, which measures the abundance and quality of aquifers, we know that the Earth’s groundwater supply is dwindling — and increasingly contaminated by pesticides and runoff. Rivers, at least near any major metropolitan area, are out of the question as sources for drinking water. That leaves water vapor, which West calls “the purest, cleanest, most abundant, recyclable source of water that exists on the face of the earth.”

The atmospheric water generator was first developed in Spain, another country with perpetual drought problems, but according to West, it performs best in high-heat, high-humidity areas. It can reliably produce between 2,000 and 3,000 gallons of water per day, and with the proper institutional support, West says, “I know how to scale this up to produce a million gallons a day, 30 million gallons a month.”