Toggle light / dark theme

🌍🔬🩠


In a recent study published in the journal Cell, researchers developed a deep learning model, “LucaProt,” a transformer-based AI model to detect highly divergent ribonucleic acid (RNA)-dependent RNA polymerase (RdRP) sequences in meta-transcriptomes from diverse ecosystems. They identified 180 RNA virus supergroups and 161,979 putative RNA virus species, showing that RNA viruses are widespread and present even in extreme environments.

Background

RNA viruses are widespread and infect a variety of species, yet their role in global ecosystems has only recently been recognized due to large-scale virus discovery efforts. These studies, primarily using RdRP sequences, have expanded the known virosphere by identifying thousands of new virus species. However, current tools often miss highly divergent RNA viruses, prompting the need for improved identification strategies.

A recent demonstration by a YouTuber compared the performance of a hemp battery against a lithium-ion battery, and the results were astounding: the hemp battery was eight times more powerful. Tesla’s new million-mile battery, made from lithium-iron phosphate, is designed to last twice as long as conventional lithium-ion batteries. However, even this advanced battery cannot compete with the power and renewability of hemp-based batteries.

Implications for the Future

The development of hemp batteries offers a more sustainable and affordable alternative to lithium-ion and graphene-based batteries. By replacing lithium batteries with hemp, electric cars and other gadgets can become significantly more eco-friendly. The use of a renewable resource like hemp to create powerful and cost-effective batteries has the potential to revolutionize the battery industry, making our world more energy-efficient and sustainable.

Now in Quantum: by Antonio deMarti iOlius, Patricio Fuentes, RomĂĄn OrĂșs, Pedro M. Crespo, and Josu Etxezarreta Martinez https://doi.org/10.22331/q-2024-10-10-1498


Antonio deMarti iOlius1, Patricio Fuentes2, RomĂĄn OrĂșs3,4,5, Pedro M. Crespo1, and Josu Etxezarreta Martinez1

1Department of Basic Sciences, Tecnun — University of Navarra, 20,018 San Sebastian, Spain. 2 Photonic Inc., Vancouver, British Columbia, Canada. 3 Multiverse Computing, Pio Baroja 37, 20008 San Sebastián, Spain 4 Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain 5 IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.

Get full text pdfRead on arXiv VanityComment on Fermat’s library.

A new laser oscillator generates ultrashort pulses, 50% more powerful than the previous record.


Researchers at ETH Zurich have developed a laser oscillator that produces the most powerful ultra-short laser pulses ever.

The pulses from the laser last for less than 10−12 seconds. However, on average, they carry 550 watts of power, with peak power output reaching 100 megawatts — this is more than enough to power hundreds of thousands of vacuum cleaners together for a short duration.

“They surpass the previous maximum by more than 50 percent. This is, to the best of our knowledge, the highest average power and highest pulse energy ever achieved for any modelocked oscillator,” the researchers note.

The concept behind Blindsight involves leveraging brain-machine interfaces (BMIs) to restore or even enhance sensory perception in individuals who have lost their sight. The goal is to bypass damaged or non-functional parts of the visual system by directly interfacing with the brain’s visual cortex, allowing users to see using digital inputs processed by the Neuralink implant.

The idea is that the implant could take visual information from cameras or other sensors and transmit it directly to the brain, potentially allowing users to perceive images or their surroundings without relying on their natural eyes.

Researchers have long observed that a common family of environmental bacteria, Comamonadacae, grow on plastics littered throughout urban rivers and wastewater systems.


Finding could lead to bioengineering solutions to clean up plastic waste.

A new study finds that a common bacterium can break down plastic for food, opening new possibilities for bacteria-based engineering solutions to help clean up plastic waste. Illustration credit Ludmilla Aristilde/Northwestern University.

#ibm #heron #quantumcomputer #quantumphysics #softwareengineering #developers #programming #artificialintelligence #ai #neuralnetworks #machinelearning #explorepage #financialmarkets #cryptography #business #productdevelopment #researchanddevelopment #computerscience #qubit #engineering #technology #startups #science #mathematics #innovation #invention