Toggle light / dark theme

Dr. Shawna Pandya MD, is a scientist-astronaut candidate with Project PoSSUM, physician, aquanaut, speaker, martial artist, advanced diver, skydiver, and pilot-in-training.

Dr. Pandya is also the VP of Immersive Medicine with the virtual reality healthcare company, Luxsonic Technologies, Director of the International Institute of Astronautical Sciences (IIAS)/PoSSUM Space Medicine Group, Chief Instructor of the IIAS/PoSSUM Operational Space Medicine course, Director of Medical Research at Orbital Assembly Construction (a company building the world’s first rotating space station providing the first artificial gravity habitat), clinical lecturer at the University of Alberta, podcast host with the World Extreme Medicine’s WEMCast series, Primary Investigator (PI) for the Shad Canada-Blue Origin student micro-gravity competition, member of the ASCEND 2021 Guiding Coalition, Life Sciences Team Lead for the Association of Spaceflight Professionals, sesional lecturer for the “Technology and the Future of Medicine,” course at the University of Alberta, and Fellow of the Explorers’ Club.

Dr. Pandya also serves as medical advisor to several space, medical and technology companies, including Mission: Space Food, Gennesys and Aquanauta, as well as the Jasper Dark Sky Festival Advisory Committee.

Dr. Pandya holds a Bsc degree in neuroscience from University of Alberta, a MSc in Space Studies from International Space University, an MD from University of Alberta, and a certification in entrepreneurship from the Graduate Studies Program at Singularity University.

The companies attempting to avoid transparency.

Jerry Lehnert.

· 1tSpohntsnorted ·


In just over a month, the state’s largest business lobby has filed another lawsuit against the Wisconsin Department of Natural Resources over so-called “forever chemicals” known as PFAS — this time for conducting PFAS sampling in wastewater.

I’ll believe it when I see it. But this is a skyhook which can be made with existing materials.


With one end of a steel cable hovering in Earth’s orbit and the other end somewhere in outer space, the concept of a futuristic floating “space elevator” promises to amplify humans’ ability to explore the universe — and scientists engineering an improved take on the 19th-century idea say the one-time fantasy is close to becoming a reality.

“Technical-wise, it’s kind of ready,” said George Zhu, a professor of mechanical engineering at York University and a coauthor of a new study on the idea. “It just has small engineering [adjustments], and there’s no fundamental difficulty to do that.”

Zhu’s paper, published March 17 in Acta Astronautica, refines his foundational design for a mechanically feasible space elevator, which has several applications for space-related missions. It suggests that instead of previous concepts employing only one cable, or tether, there should be two attached, which can maintain opposite forces while transporting cargo in parallel.

This is the only solely ion propelled series of aircrafts that can lift their power supplies against earth’s gravity. These prototypes were patented specifically for lifting their onboard power supplies and the widely published patent has been in effect since 2014.

While the craft wasn’t working at full power for this test footage since their was a power loss, the safety tether still went completely loose when the craft was energized, and it is also shown flying outdoors. There is an indoor flight that lasted for almost 2 minutes continually when it was flying at its best. There is a video of that and other sustained flights on this YouTube channel.

Previously all heavier than air ion propelled aircrafts had to be connected through thin wires to large heavy power supplies that remained fixed to the ground.

This series of prototypes have been independently verified to fly with onboard power since 2006. It was necessary to increase the EAD thrust to weight ratio by several orders of magnitude as well as other upgrades to get it operational.

“The axons of nerve cells function a bit like a railway system, where the cargo is essential components required for the cells to survive and function. In neurodegenerative diseases, this railway system can get damaged or blocked,” Tasneem Khatib, the study’s first author, explained in a statement. “We reckoned that replacing two molecules that we know work effectively together would help to repair this transport network more effectively than delivering either one alone, and that is exactly what we found.”


Most neurodegenerative diseases are caused by multiple genetic abnormalities, making them difficult to address with gene therapy targeted at single mutations. Astellas is working on a gene therapy that expresses two proteins, and a University of Cambridge team has shown that it holds promise in glau…

Harvard University researchers have identified the biological mechanism of how chronic stress impairs hair follicle stem cells, confirming long-standing observations that stress might lead to hair loss.

In a mouse study published in the journal Nature, the researchers found that a major stress hormone causes to stay in an extended resting phase, without regenerating the follicle and hair. The researchers identified the specific cell type and molecule responsible for relaying the stress signal to the stem cells, and showed that this pathway can be potentially targeted to restore hair growth.

“My lab is interested in understanding how stress affects stem cell biology and tissue biology, spurred in part by the fact that everyone has a story to share about what happens to their skin and hair when they are stressed. I realized that as a skin stem cell biologist, I could not provide a satisfying answer regarding if stress indeed has an impact—and more importantly, if yes, what are the mechanisms,” said Ya-Chieh Hsu, Ph.D., the Alvin and Esta Star Associate Professor of Stem Cell and Regenerative Biology at Harvard and senior author of the study. “The skin offers a tractable and accessible system to study this important problem in depth, and in this work, we found that stress does actually delay stem cell activation and fundamentally changes how frequently hair follicle stem cells regenerate tissues.”

In a first, scientists have revealed that animal and human DNA can be plucked straight out of thin air. The development heralds a promising new scientific technique with possible applications for ecology, forensics, and medicine, according to a new study.


“For example, this technique could help us to better understand the transmission of airborne diseases such as COVID-19.”

The research team is working with partners in industry, including the company NatureMetrics, to see how the technique can be applied in other ways, the university said.