Toggle light / dark theme

Engineers at Duke University have developed an electronics-free, entirely soft robot shaped like a dragonfly that can skim across water and react to environmental conditions such as pH, temperature or the presence of oil. The proof-of-principle demonstration could be the precursor to more advanced, autonomous, long-range environmental sentinels for monitoring a wide range of potential telltale signs of problems.

The soft robot is described online March 25 in the journal Advanced Intelligent Systems.

Soft robots are a growing trend in the industry due to their versatility. Soft parts can handle delicate objects such as biological tissues that metal or ceramic components would damage. Soft bodies can help robots float or squeeze into tight spaces where rigid frames would get stuck.

https://youtube.com/watch?v=m3Hm0PGQb0I&feature=share

On March 28, 2021 NASA’s Mars Helicopter Ingenuity took vertical position (upright) under Perseverance Rover at Helipad. Helicopter release system unlocked yesterday. Today ingenuity made one more step to be deployed from Perseverance. As for now, NASA’s rover prepares to unlock Helicopter’s landing legs and put it on the Mars’s surface. Flight scheme is known. Solar panel charges Lithium-ion batteries, providing enough energy for one 90-second flight per Martian day (~350 Watts of average power during flight). Atmospheric weather relates to conditions such as air density at flight time, which affects the thrust that can be produced by the rotor and could result in adjustments of flight parameters. Temperature and wind profiles during the day are used to estimate the energy required to operate heaters. Winds at the time of the flight are tied to risks associated with takeoff, landing, and flying in high winds or very gusty conditions. All the things that a pilot on Earth would care about too!

Credit: nasa.gov, NASA/JPL-Caltech, NASA/JPL-Caltech/ASU

Source for NASA’s Mars Helicopter Ingenuity page: https://mars.nasa.gov/technology/helicopter/

#mars #helicopter #perseverance

“The results were surprising, but convincing, says Yannick Pauchet, a molecular entomologist also at the Max Planck Institute for Chemical Ecology. ” According to the data they provide, horizontal gene transfer is the most parsimonious explanation,” he says.

But how the whitefly managed to swipe a plant gene is unclear. One possibility, says Turlings, is that a virus served as an intermediate, shuttling genetic material from a plant into the whitefly genome.

As researchers s… See More.


Discovery that a whitefly uses a stolen plant gene to elude its host’s defences may offer a route to new pest-control strategies.

COVID-21 is the product of all these changes in aggregate. It’s the disease as it will be experienced in the months and years to come: with new variants of the virus, new public policies and health behaviors, various degrees of immune memory, and—most important—a cavalcade of new vaccines.

One-quarter of all Americans have now received at least one shot, and that number is racing up. This month, New Yorkers lined up outside Yankee Stadium throughout the night at a makeshift 24/7 vaccination site, until the supply ran out. “If we open 3000 appointments, they will immediately fill,” says Ramon Tallaj, a physician who oversees clinical care in underserved communities across New York City. Demand seems to be growing. If there were sufficient supply, Tallaj told me, his team could be giving out 40000 doses every day. And this should happen soon; the White House says that shortages will end in the coming weeks.

The vaccination effort is sure to change the nature of COVID in unexpected ways. The habitat for the virus is changing: It may still stick in the nasal passages of an immunized person, but it shouldn’t continue on its way into the lungs, much less the toes. The key question is just how long this protection will last, especially against a rapidly mutating virus. Clinical trials have shown the vaccines to be fantastic at preventing serious illness so far, but haven’t yet been able to observe how protection might dissipate over long periods.

And unexpectedly, Covid-19 has proved to be the catalyst. “What the pandemic has done is accelerate the adoption of genomics into infectious disease by several years,” says deSouza, the Illumina chief executive. He also told me he believes that the pandemic has accelerated the adoption of genomics into society more broadly — suggesting that quietly, in the midst of chaos and a global catastrophe, the age of cheap, rapid sequencing has arrived.


Ultrafast and ultracheap sequencing could reshape the future of health care.

Post-mortem changes may shed light on important brain studies.

In the hours after we die, certain cells in the human brain are still active. Some cells even increase their activity and grow to gargantuan proportions, according to new research from the University of Illinois Chicago.

In a newly published study in the journal Scientific Reports, the UIC researchers analyzed gene expression in fresh brain tissue — which was collected during routine brain surgery — at multiple times after removal to simulate the post-mortem interval and death. They found that gene expression in some cells actually increased after death.

“The Office of Racial Equity at the San Francisco Human Rights Commission will handle the program and artists from ”historically marginalized communities” are encouraged to apply.

Other basic income programs under development in San Francisco include funds for emergency medical technicians and Black and Pacific Islander expectant mothers, FOX 2 reported.


You could call it art for art’s sake — plus $1000 a month.

San Francisco plans to start paying 130 local artists $1000 a month starting in May through the fall in a pilot program announced on Thursday.

MIT Haystack Observatory is one of the 13 stakeholder institutions that constitute the Event Horizon Telescope (EHT) collaboration, which produced the first-ever image of a black hole. The EHT revealed today a new view of the massive object at the center of the M87 galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of a black hole. The observations are key to explaining how the M87 galaxy, located 55 million light-years away, is able to launch energetic jets from its core.

Haystack Research Scientist Vincent Fish says “Hundreds of people around the world in the EHT collaboration, including scientists and engineers at Haystack, have worked very hard to investigate the role of magnetic fields in shaping jets around black holes. Can magnetic fields build up and dominate over the intense pull of gravity? Our data provide an answer.”